Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Eyral, Christophe"'
Publikováno v:
Comptes Rendus. Mathématique, Vol 359, Iss 8, Pp 991-997 (2021)
In this note, we investigate the behaviour of the Łojasiewicz exponent under hyperplane sections and its relation to the order of tangency.
Externí odkaz:
https://doaj.org/article/21b2210614054b63b9577c934741e555
Autor:
Eyral, Christophe, Oka, Mutsuo
Let $f$ be a (possibly Newton degenerate) weighted homogeneous polynomial defining an isolated surface singularity at the origin of $\mathbb{C}^3$, and let $\{f_s\}$ be a generic deformation of its coefficients such that $f_s$ is Newton non-degenerat
Externí odkaz:
http://arxiv.org/abs/2412.06384
Autor:
Eyral, Christophe, Oka, Mutsuo
We introduce a class of complex surface singularities - the blow-$ADE$ singularities - which are likely to be stable with respect to $\mu^*$-constant deformations. We prove such a stability property in several special cases. Here, we emphasize that w
Externí odkaz:
http://arxiv.org/abs/2401.17850
Autor:
Eyral, Christophe, Oka, Mutsuo
A Zariski pair of surfaces is a pair of complex polynomial functions in $\mathbb{C}^3$ which is obtained from a classical Zariski pair of projective curves $f_0(z_1,z_2,z_3)=0$ and $f_1(z_1,z_2,z_3)=0$ of degree $d$ in $\mathbb{P}^2$ by adding a same
Externí odkaz:
http://arxiv.org/abs/2204.14119
Autor:
Eyral, Christophe, Oka, Mutsuo
It is well known that the diffeomorphism-type of the Milnor fibration of a (Newton) non-degenerate polynomial function $f$ is uniquely determined by the Newton boundary of $f$. In the present paper, we generalize this result to certain degenerate fun
Externí odkaz:
http://arxiv.org/abs/2108.08193
Autor:
Eyral, Christophe, Oka, Mutsuo
We give a criterion to test geometric properties such as Whitney equisingularity and Thom's $a_f$ condition for new families of (possibly non-isolated) hypersurface singularities that "behave well" with respect to their Newton diagrams. As an importa
Externí odkaz:
http://arxiv.org/abs/2005.01416
In this note, we study the behaviour of the Lojasiewicz exponent under hyperplane sections and its relation to the order of tangency.
Comment: 8 pages; v3 improves the exposition of the proof of Theorem 2 and gives a new Observation 4 on the ord
Comment: 8 pages; v3 improves the exposition of the proof of Theorem 2 and gives a new Observation 4 on the ord
Externí odkaz:
http://arxiv.org/abs/2003.13031
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We give an algorithm to compute the L\^e numbers of (the germ of) a Newton non-degenerate complex analytic function $f\colon(\mathbb{C}^n,0) \rightarrow (\mathbb{C},0)$ in terms of certain invariants attached to the Newton diagram of the function $f+
Externí odkaz:
http://arxiv.org/abs/1812.00614
Autor:
Eyral, Christophe
Publikováno v:
Pacific J. Math. 291 (2017) 359-367
Let $\{f_t\}$ be a family of complex polynomial functions with line singularities. We show that if $\{f_t\}$ has a uniform stable radius (for the corresponding Milnor fibrations), then the L\^e numbers of the functions $f_t$ are independent of $t$ fo
Externí odkaz:
http://arxiv.org/abs/1704.08475