Zobrazeno 1 - 10
of 78 846
pro vyhledávání: '"Extreme points"'
Autor:
Lahr, Patrick, Niemeyer, Axel
This paper characterizes extreme points of the set of incentive-compatible mechanisms for screening problems with linear utility. Extreme points are exhaustive mechanisms, meaning their menus cannot be scaled and translated to make additional feasibi
Externí odkaz:
http://arxiv.org/abs/2412.00649
We consider the problem of characterizing extreme points of the convex set of positive linear operators on a possibly infinite-dimensional Hilbert space under linear constraints. We show that even perturbations of points in such sets admit what resem
Externí odkaz:
http://arxiv.org/abs/2410.14889
Autor:
Song, Zhiwei, Chen, Lin
The absolutely separable (resp. PPT) states remain separable (resp. positive partial transpose) under any global unitary operation. We present a compact form of the extreme points in the sets of absolutely separable states and PPT states in two-qubit
Externí odkaz:
http://arxiv.org/abs/2409.14347
Autor:
Astashkin, Sergey V.
We prove that every measurable function $f:\,[0,a]\to\mathbb{C}$ such that $|f|=1$ a.e. on $[0,a]$ is an extreme point of the unit ball of the Lorentz space $\Lambda(\varphi)$ on $[0,a]$ whenever $\varphi$ is a not linear, strictly increasing, concav
Externí odkaz:
http://arxiv.org/abs/2407.10178
Our work explores fusions, the multidimensional counterparts of mean-preserving contractions and their extreme and exposed points. We reveal an elegant geometric/combinatorial structure for these objects. Of particular note is the connection between
Externí odkaz:
http://arxiv.org/abs/2409.10779
Autor:
Argyros, Spiros A., González, Manuel
We provide a new proof of S. Bellenot's characterization of the extreme points of the unit ball $B_J$ of James quasi-reflexive space $J$. We also provide an explicit description of the norm of $J^{**}$ which yields an analogous characterization for t
Externí odkaz:
http://arxiv.org/abs/2406.14104
This expository article gives a survey of matrix convex sets, a natural generalization of convex sets to the noncommutative (dimension-free) setting, with a focus on their extreme points. Mirroring the classical setting, extreme points play an import
Externí odkaz:
http://arxiv.org/abs/2405.07924
Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular po
Externí odkaz:
http://arxiv.org/abs/2405.01039
Autor:
Koehl, Patrice
Transportation matrices are $m\times n$ non-negative matrices whose row sums and row columns are equal to, or dominated above with given integral vectors $R$ and $C$. Those matrices belong to a convex polytope whose extreme points have been previousl
Externí odkaz:
http://arxiv.org/abs/2404.16791
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.