Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Exponential domination number"'
Autor:
Betül ATAY ATAKUL
Publikováno v:
AIMS Mathematics, Vol 5, Iss 5, Pp 5063-5075 (2020)
For a graph $G=(V,E)$ and the exponential dominating set $S\subseteq V(G)$ of $G$ such that $\sum_{u \in S}(1/2)^ {\overline{d}(u,v)-1}\geq 1 $, $\forall v\in V(G)$, where $\overline{d}(u,v)$ is the length of a shortest path in $ \langle V(G)-(S-\{u\
Externí odkaz:
https://doaj.org/article/ec27dab77f214729b25b260acd0ad010
Autor:
Coşkun, Belgin
G sonlu birleştirilmiş bir graf olsun. Bir grafının dış-merkezli bağlantılılık indeksi (Eccentric Connectivity index) olarak tanımlanır. Burada, ve sırasıyla tepesinin derecesi ve açılımıdır. Sharma, Goswami ve Madan tarafından ta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______9436::ad4d848247e38709290d11c623b2c98a
https://hdl.handle.net/11454/73444
https://hdl.handle.net/11454/73444
Autor:
Aysun Aytaç, Betül Atay Atakul
EgeUn###
An exponential dominating set of graph G = (V, E) is a kind of distance domination subset S subset of V(G) such that Sigma(u is an element of S)(1/2)((d) over bar (u,v)-1) >= 1, for all v E V(G), where (d) over bar (u, v) is the length
An exponential dominating set of graph G = (V, E) is a kind of distance domination subset S subset of V(G) such that Sigma(u is an element of S)(1/2)((d) over bar (u,v)-1) >= 1, for all v E V(G), where (d) over bar (u, v) is the length
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f1e0a36dc0ca835bd98b97cc1d8ad6e
https://hdl.handle.net/20.500.12501/2979
https://hdl.handle.net/20.500.12501/2979
Autor:
Aytaç A., Atay Atakul B.
EgeUn###
The well-known concept of domination in graphs is a good tool for analyzing situations that can be modeled by networks. Although a vertex in the graph can exert in uence on, or dominate, all vertices in its immediate neighbourhood, in s
The well-known concept of domination in graphs is a good tool for analyzing situations that can be modeled by networks. Although a vertex in the graph can exert in uence on, or dominate, all vertices in its immediate neighbourhood, in s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______9436::1b9383e9b4a27bf5920924cf515c2fab
https://hdl.handle.net/11454/15781
https://hdl.handle.net/11454/15781
Autor:
Aytaç, Aysun, Atay, Betül
The well-known concept of domination in graphs is a good tool for analyzing situations that can be modeled by networks. Although a vertex in the graph can exert influence on, or dominate, all vertices in its immediate neighbourhood, in some real Worl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::19f817426fd6efc1ea3b7a2bdc4154e9
http://jaem.isikun.edu.tr/web/index.php/archive/101-vol9no2/398
http://jaem.isikun.edu.tr/web/index.php/archive/101-vol9no2/398
Autor:
Aytac, A., Atakul, B. Atay
WOS: 000462906300002
The well-known concept of domination in graphs is a good tool for analyzing situations that can be modeled by networks. Although a vertex in the graph can exert influence on, or dominate, all vertices in its immediate neighb
The well-known concept of domination in graphs is a good tool for analyzing situations that can be modeled by networks. Although a vertex in the graph can exert influence on, or dominate, all vertices in its immediate neighb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::587149d6d1dc43c5cee75371033f7638
https://hdl.handle.net/20.500.12501/736
https://hdl.handle.net/20.500.12501/736
Autor:
Atay, Betul, Aytac, Aysun
An exponential dominating set of graph G = (V, E) is a subset S subset of V (G) such that Sigma(u is an element of S)(1/2)((u,v)-1) >= 1 for every vertex v in V (G) - S, where (d) over bar (u,v) is the distance between vertices u is an element of S a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4667::2353c300f8189237d3454c9f4143a324
https://hdl.handle.net/20.500.12501/858
https://hdl.handle.net/20.500.12501/858
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.