Zobrazeno 1 - 10
of 384
pro vyhledávání: '"Expanding interval maps"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Farber, Ethan
We investigate a phenomenon observed by W. Thurston wherein one constructs a pseudo-Anosov homeomorphism on the limit set of a certain lift of a piecewise-linear expanding interval map. We reconcile this construction with a special subclass of genera
Externí odkaz:
http://arxiv.org/abs/2101.01721
Autor:
Duvall, Jason
We study Manneville-Pomeau maps on the unit interval and prove that the set of points whose forward orbits miss an interval with left endpoint 0 is strong winning for Schmidt's game. Strong winning sets are dense, have full Hausdorff dimension, and s
Externí odkaz:
http://arxiv.org/abs/1911.12004
Publikováno v:
Transactions of the American Mathematical Society, 2015 Mar 01. 367(3), 1847-1870.
Externí odkaz:
http://www.jstor.org/stable/24513020
Autor:
Persson, Tomas, Rams, Michał
For a map $T \colon [0,1] \to [0,1]$ with an invariant measure $\mu$, we study, for a $\mu$-typical $x$, the set of points $y$ such that the inequality $|T^n x - y| < r_n$ is satisfied for infinitely many $n$. We give a formula for the Hausdorff dime
Externí odkaz:
http://arxiv.org/abs/1406.6785
Autor:
Butterley, Oliver
Publikováno v:
Discrete Contin. Dyn. Syst. 33(8):3355-3363, 2013
We introduce a family of Banach spaces of measures, each containing the set of measures with density of bounded variation. These spaces are suitable for the study of weighted transfer operators of piecewise-smooth maps of the interval where the weigh
Externí odkaz:
http://arxiv.org/abs/1206.1136
In this paper we investigate multifractal decompositions based on values of Birkhoff averages of functions from a class of symbolically continuous functions. This will be done for an expanding interval map with infinitely many branches and is a gener
Externí odkaz:
http://arxiv.org/abs/1110.2856
Autor:
Shen, Weixiao
We study the expanding properties of random perturbations of regular interval maps satisfying the summability condition of exponent one. Under very general conditions on the interval maps and perturbation types, we prove strong stochastic stability.<
Externí odkaz:
http://arxiv.org/abs/1107.2537
Publikováno v:
Fundamenta Mathematicae, 206 (2009), 161-183
We study differentiability of topological conjugacies between expanding piecewise $C^{1+\epsilon}$ interval maps. If these conjugacies are not $C^1$, then they have zero derivative almost everywhere. We obtain the result that in this case the Hausdor
Externí odkaz:
http://arxiv.org/abs/0807.0115
Autor:
Baladi, Viviane
We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which gua
Externí odkaz:
http://arxiv.org/abs/math/0612852