Zobrazeno 1 - 10
of 1 234
pro vyhledávání: '"Exceptional point"'
Autor:
Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang
Publikováno v:
Frontiers of Optoelectronics, Vol 17, Iss 1, Pp 1-9 (2024)
Abstract In this paper, we propose a deformed Reuleaux-triangle resonator (RTR) to form exceptional point (EP) which results in the detection sensitivity enhancement of nanoparticle. After introducing single nanoparticle to the deformed RTR at EP, fr
Externí odkaz:
https://doaj.org/article/d2915de4c2444147991ad949040df6d7
Publikováno v:
Opto-Electronic Advances, Vol 6, Iss 12, Pp 1-8 (2023)
An exceptional-point (EP) enhanced fiber-optic bending sensor is reported. The sensor is implemented based on parity-time (PT)-symmetry using two coupled Fabry-Perot (FP) resonators consisting of three cascaded fiber Bragg gratings (FBGs) inscribed i
Externí odkaz:
https://doaj.org/article/f018aa825e8c4b1da769f2af0d775a0e
Publikováno v:
Results in Physics, Vol 60, Iss , Pp 107675- (2024)
Optical differential operation is an important scheme for image edge detection due to its advantages of high efficiency, real time and low consumption. In this paper, the actively manipulating optical differential operation is proposed in a quasi-PT-
Externí odkaz:
https://doaj.org/article/e7f8c6c7babf43568faa4db5cba3a90a
Autor:
Chris Sturm
Publikováno v:
Advanced Photonics Research, Vol 5, Iss 4, Pp n/a-n/a (2024)
Although the investigation of the propagation of electromagnetic waves in crystals dates back to the 19th century, the presence of singular optic axes in optically anisotropic materials has not been fully explored until now. Along such an axis, eithe
Externí odkaz:
https://doaj.org/article/391650e7fb9e4f3a88bede93d630ed33
Publikováno v:
Advanced Science, Vol 11, Iss 7, Pp n/a-n/a (2024)
Abstract Enantiomeric excess (ee) is an essential indicator of chiral drug purification in the pharmaceutical industry. However, to date the ee determination of unknown concentration enantiomers generally involves two separate techniques for chiralit
Externí odkaz:
https://doaj.org/article/3cf0bb8c78ae4ec3b3308e1b608a7924
Publikováno v:
Results in Physics, Vol 56, Iss , Pp 107292- (2024)
We in this paper study the relation of hermiticity and energy spectrum for Hamiltonians consisting of SU(1,1) generators. In contrast with the common belief, the transition from real to imaginary spectra can appear at an exceptional point for the Her
Externí odkaz:
https://doaj.org/article/316f002be1434f00acfc9abcb3734fec
Publikováno v:
Nanophotonics, Vol 12, Iss 11, Pp 2029-2039 (2023)
Exceptional points (EPs) are degenerate singularities in a non-Hermitian system that can be induced by controlling the interaction between resonant photonic modes. EPs can enable unusual optical phenomena and significantly enhance the optical sensiti
Externí odkaz:
https://doaj.org/article/c465fd1a986d4d23af7ef8f483d61bbd
Publikováno v:
Âderna Fìzika ta Energetika, Vol 24, Iss 1, Pp 51-59 (2023)
The paper proposes a method of controlled heating of a cylindrical plasma using the features of the Exceptional point. It is shown that the coupled system of plasma and dielectric waveguides is capable of generating exceptional points where their dis
Externí odkaz:
https://doaj.org/article/a023f338a1b541d082af7664f030d0e0
Publikováno v:
Symmetry, Vol 16, Iss 4, p 430 (2024)
We develop a 4 × 4-matrix model based on temporal coupled mode theory (TCMT) to elucidate the intricate energy exchange within a non-Hermitian, resonant photonic structure, based on the recently described infinity-loop micro-resonator (ILMR). We con
Externí odkaz:
https://doaj.org/article/852fb64c34a44a89b341f952131619fc
Autor:
Miloslav Znojil
Publikováno v:
Symmetry, Vol 16, Iss 3, p 353 (2024)
A unitary-evolution process leading to an ultimate collapse and to a complete loss of observability alias quantum phase transition is studied. A specific solvable N−state model is considered, characterized by a non-stationary non-Hermitian Hamilton
Externí odkaz:
https://doaj.org/article/b5734553fcb040f2bcecbc1e91877403