Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Evgrafov, Anton"'
Autor:
Schytt, Marcus, Evgrafov, Anton
We derive the dual variational principle (principle of minimal complementary energy) for the nonlocal nonlinear scalar diffusion problem, which may be viewed as the nonlocal version of the $p$-Laplacian operator. We establish existence and uniqueness
Externí odkaz:
http://arxiv.org/abs/2306.08435
Autor:
Evgrafov, Anton, Bellido, José C.
We consider the problem of optimal distribution of a limited amount of conductive material in systems governed by local and non-local scalar diffusion laws. Of particular interest for these problems is the study of the limiting case, which appears wh
Externí odkaz:
http://arxiv.org/abs/2107.12994
Autor:
Evgrafov, Anton, Bellido, Jose C.
We explore the dual approach to nonlocal optimal design, specifically for a classical min-max problem which in this study is associated with a nonlocal scalar diffusion equation. We reformulate the optimal design problem utilizing a dual variational
Externí odkaz:
http://arxiv.org/abs/2106.06031
Autor:
Evgrafov, Anton, Bellido, Jose C
We consider a problem of optimal distribution of conductivities in a system governed by a non-local diffusion law. The problem stems from applications in optimal design and more specifically topology optimization. We propose a novel parametrization o
Externí odkaz:
http://arxiv.org/abs/1905.01931
Autor:
Bellido, José C., Evgrafov, Anton
This is a follow-up of a paper by Fern\'andez-Bonder-Ritorto-Salort [8], where the classical concept of $H$-convergence was extended to fractional \(p\)-Laplace type operators. In this short paper we provide an explicit characterization of this notio
Externí odkaz:
http://arxiv.org/abs/1903.11585
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Evgrafov, Anton, Bellido, José C.
Eringen's model is one of the most popular theories in nonlocal elasticity. It has been applied to many practical situations with the objective of removing the anomalous stress concentrations around geometric shape singularities, which appear when th
Externí odkaz:
http://arxiv.org/abs/1806.03906
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Evgrafov, Anton, Bellido, José C.
Publikováno v:
Evgrafov, A & Bellido, J C 2023, ' Nonlocal Basis Pursuit: Nonlocal Optimal Design of Conductive Domains in the Vanishing Material Limit ', SIAM Journal on Mathematical Analysis, vol. 55, no. 4, pp. 2740-2773 . https://doi.org/10.1137/22M1479166
We consider the problem of optimal distribution of a limited amount of conductive material in systems governed by local and nonlocal scalar diffusion laws. Of particular interest for these problems is the study of the limiting case, which appears whe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::903e3b3951a5b25b0a988a389c60bfd0
https://vbn.aau.dk/da/publications/c43ffb11-d5be-4412-a378-767f13443a02
https://vbn.aau.dk/da/publications/c43ffb11-d5be-4412-a378-767f13443a02