Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Evgenij Troitsky"'
Autor:
Evgenij Troitsky, D. V. Fufaev
Publikováno v:
Functional Analysis and Its Applications. 54:287-294
Quite recently a criterion for the $$\mathcal{A}$$ -compactness of an ajointable operator $$F\colon {\mathcal M} \to\mathcal{N}$$ between Hilbert $$C^*$$ -modules, where $$\mathcal{N}$$ is countably generated, was obtained. Namely, a uniform structur
Autor:
Evgenij Troitsky
Publikováno v:
Journal of Mathematical Sciences
TheTBFTf conjecture, which is a modification of a conjecture by Fel’shtyn and Hill, says that if the Reidemeister number R(𝜙) of an automorphism 𝜙 of a (countable discrete) group G is finite, then it coincides with the number of fixed points
Publikováno v:
Russian Journal of Mathematical Physics. 27:199-211
We introduce new zeta functions related to an endomorphism ϕ of a discrete group Γ. They are of two types: counting numbers of fixed (ρ ~ ρ o ϕn) irreducible representations for iterations of ϕ from an appropriate dual space of Γ and counting
Autor:
Evgenij Troitsky
Publikováno v:
Russian Journal of Mathematical Physics
We prove that a saturated weakly branch group $G$ has the property $R_\infty$ (any automorphism $\phi:G\to G$ has infinite Reidemeister number) in each of the following cases: 1) any element of $Out(G)$ has finite order; 2) for any $\phi$ the number
Autor:
Evgenij Troitsky, Alexander Fel'shtyn
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2020:229-230
We correct a heavy misprint in our paper.
Autor:
Evgenij Troitsky, Vladimir Manuilov
Generalizing the case of an infinite discrete metric space of finite diameter, we say that a discrete metric space $(X,d)$ is a Kuiper space, if the group of invertible elements of its uniform Roe algebra is norm-contractible. Various sufficient cond
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68792c1a6819b790ec4b0c37609f3645
Autor:
Evgenij Troitsky
Publikováno v:
Communications in Algebra
We prove that for any automorphism $\phi$ of the restricted wreath product $\mathbb{Z}_2 \mathrm{wr} \mathbb{Z}^k$ and $\mathbb{Z}_3 \mathrm{wr} \mathbb{Z}^{2d}$ the Reidemeister number $R(\phi)$ is infinite, i.e. these groups have the property $R_\i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c93df46ce895705808530ad563ce7db
https://hdl.handle.net/21.11116/0000-0004-8AE5-E21.11116/0000-0004-8AE6-D21.11116/0000-0004-8AE3-0
https://hdl.handle.net/21.11116/0000-0004-8AE5-E21.11116/0000-0004-8AE6-D21.11116/0000-0004-8AE3-0
Autor:
Evgenij Troitsky
We introduce a uniform structure on any Hilbert $C^*$-module $\mathcal N$ and prove the following theorem: suppose, $F:{\mathcal M}\to {\mathcal N}$ is a bounded adjointable morphism of Hilbert $C^*$-modules over $\mathcal A$ and $\mathcal N$ is coun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da2a5060540ba8fa9d268108d5fb3b3f
Autor:
Alexander Fel'shtyn, Evgenij Troitsky
Publikováno v:
Russian Journal of Mathematical Physics
Let $R(\phi)$ be the number of $\phi$-conjugacy (or Reidemeister) classes of an endomorphism $\phi$ of a group $G$. We prove for several classes of groups (including polycyclic) that the number $R(\phi)$ is equal to the number of fixed points of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::835f96445c40446eb100faf8d257a2bd
http://arxiv.org/abs/1704.09013
http://arxiv.org/abs/1704.09013
Publikováno v:
Studia Mathematica. 200:131-148
Continuous actions of topological groups on compact Hausdorff spaces X are investigated which induce almost periodic functions in the corresponding commutative C � -algebra. The unique invariant mean on the group resulting from averaging allows to