Zobrazeno 1 - 10
of 324
pro vyhledávání: '"Evertse A"'
Autor:
Evertse, Jan-Hendrik, Győry, Kálmán
We give a survey on the general effective reduction theory of integral polynomials and its applications. We concentrate on results providing the finiteness for the number of `$\mathbb{Z}$-equivalence classes' and `$GL_2(\mathbb{Z})$-equivalence class
Externí odkaz:
http://arxiv.org/abs/2409.02627
Autor:
Evertse, Jan-Hendrik
Publikováno v:
Acta Arithmetica on-line first, 2023
For an algebraic number $\alpha$ of degree $n$, let $\mathcal{M}_{\alpha}$ be the $\mathbb{Z}$-module generated by $1,\alpha ,\ldots ,\alpha^{n-1}$; then $\mathbb{Z}_{\alpha}:=\{\xi\in\mathbb{Q} (\alpha ):\, \xi\mathcal{M}_{\alpha}\subseteq\mathcal{M
Externí odkaz:
http://arxiv.org/abs/2301.01552
Autor:
Danina Evertse, Pilar Alves-Martinez, Giulia Treccani, Marianne B. Müller, Frank J. Meye, Michael A. van der Kooij
Publikováno v:
Neurobiology of Stress, Vol 33, Iss , Pp 100690- (2024)
Chronic stress has been connected to a reduced effort and motivational deficits. To study effort-based motivation in rodents, operant conditioning is often employed. However, caloric restriction is typically imposed simultaneously. Since caloric rest
Externí odkaz:
https://doaj.org/article/daf3b863cb494bb983c3a7198cb837a6
Autor:
Evertse, Danina, Alves-Martinez, Pilar, Treccani, Giulia, Müller, Marianne B., Meye, Frank J., van der Kooij, Michael A.
Publikováno v:
In Neurobiology of Stress November 2024 33
Autor:
Bhargava, Manjul, Evertse, Jan-Hendrik, Győry, Kálmán, Remete, László, Swaminathan, Ashvin A.
Publikováno v:
Acta Arithmetica, on-line first, 2023
In this paper, we resurrect a long-forgotten notion of equivalence for univariate polynomials with integral coefficients introduced by Hermite in the 1850s. We show that the Hermite equivalence class of a polynomial has a very natural interpretation
Externí odkaz:
http://arxiv.org/abs/2109.02932
Let $\mathcal{O}$ be an order, that is a commutative ring with $1$ whose additive structure is a free $\mathbb{Z}$-module of finite rank. A generalized number system (GNS for short) over $\mathcal{O}$ is a pair $(p,\mathcal{D} )$ where $p\in\mathcal{
Externí odkaz:
http://arxiv.org/abs/1810.09710
Publikováno v:
Documenta Mathematica, Extra Vol., Mahler Selecta (2019), 149-171
We discuss Mahler's work on Diophantine approximation and its applications to Diophantine equations, in particular Thue-Mahler equations, S-unit equations and S-integral points on elliptic curves, and go into later developments concerning the number
Externí odkaz:
http://arxiv.org/abs/1806.00355
Autor:
Evertse, Jan-Hendrik
Publikováno v:
Documenta Mathematica, Extra Vol., Mahler Selecta (2019) 29-43
Mahler has written many papers on the geometry of numbers. Arguably, his most influential achievements in this area are his compactness theorem for lattices, his work on star bodies and their critical lattices, and his estimates for the successive mi
Externí odkaz:
http://arxiv.org/abs/1806.00356
Publikováno v:
Acta Arith. 184 (2018) 151-185 (special volume dedicated to the 75-th birthday of Robert Tijdeman)
Let $S$ be a finite set of primes. The $S$-part $[m]_S$ of a non-zero integer $m$ is the largest positive divisor of $m$ that is composed of primes from $S$. In 2013, Gross and Vincent proved that if $f(X)$ is a polynomial with integer coefficients a
Externí odkaz:
http://arxiv.org/abs/1708.08290
Autor:
Bugeaud, Yann, Evertse, Jan-Hendrik
Let $S = \{q_1, \ldots , q_s\}$ be a finite, non-empty set of distinct prime numbers. For a non-zero integer $m$, write $m = q_1^{r_1} \ldots q_s^{r_s} M$, where $r_1, \ldots , r_s$ are non-negative integers and $M$ is an integer relatively prime to
Externí odkaz:
http://arxiv.org/abs/1611.00485