Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Everett, Max"'
Autor:
Beougher, Marchelle, Ding, Kexin, Everett, Max, Huang, Robin, Lee, Chan, Morrison, Ralph, Weber, Ben
This paper provides a friendly introduction to chip-firing games and graph gonality. We use graphs coming from the five Platonic solids to illustrate different tools and techniques for studying these games, including independent sets, treewidth, scra
Externí odkaz:
http://arxiv.org/abs/2407.05158
The divisorial gonality of a graph is the minimum degree of a positive rank divisor on that graph. We introduce the multiplicity-free gonality of a graph, which restricts our consideration to divisors that place at most \(1\) chip on each vertex. We
Externí odkaz:
http://arxiv.org/abs/2107.12955
The scramble number of a graph is an invariant recently developed to aid in the study of divisorial gonality. In this paper we prove that scramble number is NP-hard to compute, also providing a proof that computing gonality is NP-hard even for simple
Externí odkaz:
http://arxiv.org/abs/2103.15253
Autor:
Echavarria, Marino, Everett, Max, Huang, Shinyu, Jacoby, Liza, Morrison, Ralph, Tewari, Ayush Kumar, Vlad, Raluca, Weber, Ben
Given a lattice polygon $P$ with $g$ interior lattice points, we associate to it the moduli space of tropical curves of genus $g$ with Newton polygon $P$. We completely classify the possible dimensions such a moduli space can have. For non-hyperellip
Externí odkaz:
http://arxiv.org/abs/2010.13135
Publikováno v:
In Discrete Applied Mathematics 31 March 2022 310:43-59
Publikováno v:
Electronic Journal of Graph Theory & Applications; 2023, Vol. 11 Issue 2, p357-380, 24p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Echavarria, Marino, Everett, Max, Huang, Shinyu, Jacoby, Liza, Morrison, Ralph, Tewari, Ayush K., Vlad, Raluca, Weber, Ben
Publikováno v:
Journal of Algebraic Combinatorics; Mar2022, Vol. 55 Issue 2, p559-589, 31p