Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Eveline Legendre"'
Autor:
Martin de Borbon, Eveline Legendre
Publikováno v:
Selecta Mathematica. 28
We show that any toric Kähler cone with smooth compact cross-section admits a family of Calabi–Yau cone metrics with conical singularities along its toric divisors. The family is parametrized by the Reeb cone and the angles are given explicitly in
This paper has been submitted to the Proceedings of the Australian-German Workshop on Differential Geometry in the Large held at the mathematical research institute MATRIX in Creswick, Victoria, Australia, Feb.2-Feb.14, 2019. We describe and discuss
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::59462860fabb4f3ef2fc6e0b367663b3
https://doi.org/10.1017/9781108884136.009
https://doi.org/10.1017/9781108884136.009
Publikováno v:
Adv.Math.
Adv.Math., 2021, 391, pp.107969. ⟨10.1016/j.aim.2021.107969⟩
Adv.Math., 2021, 391, pp.107969. ⟨10.1016/j.aim.2021.107969⟩
We use the correspondence between extremal Sasaki structures and weighted extremal Kahler metrics defined on a regular quotient of a Sasaki manifold, established by the first two authors, and Lahdili's theory of weighted K-stability in order to defin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::266cdac45b0629fe512f7a026829691b
Autor:
Eveline Legendre
Publikováno v:
Springer INdAM Series ISBN: 9783030131579
An almost Kahler structure is extremal if the Hermitian scalar curvature is a Killing potential (Lejmi, Int J Math 21(12):1639–1662, 2010). When the almost complex structure is integrable it coincides with extremal Kahler metric in the sense of Cal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72801601c7fa17b5a02537ac685904d1
https://doi.org/10.1007/978-3-030-13158-6_4
https://doi.org/10.1007/978-3-030-13158-6_4
Autor:
Eveline Legendre
Publikováno v:
International Journal of Mathematics
International Journal of Mathematics, 2021, ⟨10.1142/S0129167X21500555⟩
International Journal of Mathematics, 2021, ⟨10.1142/S0129167X21500555⟩
International audience; We use the equivariant localization formula to prove that the Donaldson-Futaki invariant of a compact smooth (Kähler) test configuration coincides with the Futaki invariant of the induced action on the central fiber when this
Publikováno v:
Apostolov, V, Calderbank, D M J, Gauduchon, P & Legendre, E 2020, ' Levi-Kahler reduction of CR structures, products of spheres, and toric geometry ', Mathematical Research Letters, vol. 27, no. 6, pp. 1565-1629 . https://doi.org/10.4310/MRL.2020.V27.N6.A1
We study CR geometry in arbitrary codimension, and introduce a process, which we call the Levi-Kahler quotient, for constructing Kahler metrics from CR structures with a transverse torus action. Most of the paper is devoted to the study of Levi-Kahle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1210aa67de58f4688e3dc32896fb1a85
https://hal.archives-ouvertes.fr/hal-01881051
https://hal.archives-ouvertes.fr/hal-01881051
Autor:
Eveline Legendre, Rosa Sena-Dias
Publikováno v:
The Journal of Geometric Analysis
The Journal of Geometric Analysis, Springer, 2018, 28 (3), pp.2395-2421. ⟨10.1007/s12220-017-9908-y⟩
The Journal of Geometric Analysis, 2018, 28 (3), pp.2395-2421. ⟨10.1007/s12220-017-9908-y⟩
The Journal of Geometric Analysis, Springer, 2018, 28 (3), pp.2395-2421. ⟨10.1007/s12220-017-9908-y⟩
The Journal of Geometric Analysis, 2018, 28 (3), pp.2395-2421. ⟨10.1007/s12220-017-9908-y⟩
In this paper we study the smallest non-zero eigenvalue $\lambda_1$ of the Laplacian on toric K\"ahler manifolds. We find an explicit upper bound for $\lambda_1$ in terms of moment polytope data. We show that this bound can only be attained for $\mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6653da2410f45889c407b049cf85a9ca
https://hal.archives-ouvertes.fr/hal-01881061
https://hal.archives-ouvertes.fr/hal-01881061
Publikováno v:
Trans.Am.Math.Soc.
Trans.Am.Math.Soc., 2018, 370 (10), pp.6825-6869. ⟨10.1090/tran/7526⟩
Trans.Am.Math.Soc., 2018, 370 (10), pp.6825-6869. ⟨10.1090/tran/7526⟩
The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham Decomposition Theorem; however, we need a mild technical assumption on the Sasaki automorphism group which includes th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e7da0a60385080125dd987aacf4ee19
https://hal.science/hal-01856817
https://hal.science/hal-01856817
Publikováno v:
Geom. Topol. 22, no. 7 (2018), 4205-4234
Geometry and Topology
Geometry and Topology, 2018, ⟨10.2140/gt.2018.22.4205⟩
Geometry and Topology
Geometry and Topology, 2018, ⟨10.2140/gt.2018.22.4205⟩
Building on an idea laid out by Martelli--Sparks--Yau, we use the Duistermaat-Heckman localization formula and an extension of it to give rational and explicit expressions of the volume, the total transversal scalar curvature and the Einstein--Hilber
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8fe0ab9f52b0b28af4869a71141043d
https://projecteuclid.org/euclid.gt/1544756698
https://projecteuclid.org/euclid.gt/1544756698
We define toric contact manifolds in arbitrary codimension and give a description of such manifolds in terms of a kind of labelled polytope embedded into a grassmannian, analogous to the Delzant polytope of a toric symplectic manifold.
22 pages
22 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c331d768687d1fe26a4c2fedf6a1bdd3
http://arxiv.org/abs/1708.04942
http://arxiv.org/abs/1708.04942