Zobrazeno 1 - 10
of 305
pro vyhledávání: '"Evans, Steven N."'
Mean-field interacting multi-type birth-death processes with a view to applications in phylodynamics
Multi-type birth-death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A li
Externí odkaz:
http://arxiv.org/abs/2307.06010
In 2006, Warnow, Evans, Ringe, and Nakhleh proposed a stochastic model (hereafter, the WERN 2006 model) of multi-state linguistic character evolution that allowed for homoplasy and borrowing. They proved that if there is no borrowing between language
Externí odkaz:
http://arxiv.org/abs/2306.06298
Mean-field interacting multi-type birth–death processes with a view to applications in phylodynamics
Publikováno v:
In Theoretical Population Biology October 2024 159:1-12
Autor:
Evans, Steven N., Jaffe, Adam Q.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations
Externí odkaz:
http://arxiv.org/abs/2107.14268
Autor:
Evans, Steven N., Jaffe, Adam Q.
For $1\le p \le \infty$, the Fr\'echet $p$-mean of a probability measure on a metric space is an important notion of central tendency that generalizes the usual notions in the real line of mean ($p=2$) and median ($p=1$). In this work we prove a coll
Externí odkaz:
http://arxiv.org/abs/2012.12859
Autor:
Evans, Steven N., Ouaki, Mehdi
Given a two-sided real-valued L\'evy process $(X_t)_{t \in \mathbb{R}}$, define processes $(L_t)_{t \in \mathbb{R}}$ and $(M_t)_{t \in \mathbb{R}}$ by $L_t := \sup\{h \in \mathbb{R} : h - \alpha(t-s) \le X_s \text{ for all } s \le t\} = \inf\{X_s + \
Externí odkaz:
http://arxiv.org/abs/2003.05009
Autor:
Evans, Steven N., Ouaki, Mehdi
For $\alpha >0$, the $\alpha$-Lipschitz minorant of a function $f : \mathbb{R} \rightarrow \mathbb{R}$ is the greatest function $m : \mathbb{R} \rightarrow \mathbb{R}$ such that $m \leq f$ and $\vert m(s) - m(t) \vert \leq \alpha \vert s-t \vert$ for
Externí odkaz:
http://arxiv.org/abs/1905.07038
Autor:
Evans, Steven N., Raban, Daniel
An infinite sequence of real random variables $(\xi_1, \xi_2, \dots)$ is said to be rotatable if every finite subsequence $(\xi_1, \dots, \xi_n)$ has a spherically symmetric distribution. A celebrated theorem of Freedman states that $(\xi_1, \xi_2, \
Externí odkaz:
http://arxiv.org/abs/1903.02058