Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Evangelides, P."'
Publikováno v:
AgriEngineering, Vol 5, Iss 2, Pp 876-885 (2023)
The aim of this note is to provide a quick overview of the installation and adjustment of an exclusively mechanical standalone automatic device that self-adjusts to weather changes to control the frequency and duration of the irrigation. The “hydra
Externí odkaz:
https://doaj.org/article/455aafaf12274d259d0d2fc36742aaa4
Autor:
Christos Tzimopoulos, Kyriakos Papadopoulos, Basil Papadopoulos, Nikiforos Samarinas, Christos Evangelides
Publikováno v:
Journal of Hydroinformatics, Vol 24, Iss 6, Pp 1127-1147 (2022)
In this paper, the solution of the one-dimensional second-order unsteady nonlinear fuzzy partial differential Boussinesq equation is examined. The physical problem concerns unsteady flow in a semi-infinite unconfined aquifer bordering a lake. In the
Externí odkaz:
https://doaj.org/article/d08df7ac11564469bd06728944c0309f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Christos Tzimopoulos, Kyriakos Papadopoulos, Nikiforos Samarinas, Basil Papadopoulos, Christos Evangelides
Publikováno v:
Hydrology, Vol 11, Iss 4, p 47 (2024)
In this work, a novel fuzzy FEM (Finite Elements Method) numerical solution describing the recession flow in unconfined aquifers is proposed. In general, recession flow and drainage problems can be described by the nonlinear Boussinesq equation, whil
Externí odkaz:
https://doaj.org/article/f5ca8b87c3ad49e592c70a76fc22ba5f
Publikováno v:
Journal of Hydroinformatics, Vol 24, Iss 3, Pp 590-609 (2022)
In this paper, we propose a comprehensive methodological framework for solving the fuzzy groundwater flow problem in a simpler and faster way based on numerical analysis. In particular, a novel simplified matrix explicit inverse formula is proposed a
Externí odkaz:
https://doaj.org/article/a1a7652c94da4d1c9dde4d500fa5a603
Publikováno v:
Phys. Lett. A, 380 548-553, 2016
Quantum systems with positions and momenta in Z(d), are described by the d zeros of analytic functions on a torus. The d paths of these zeros on the torus, describe the time evolution of the system. A semi-analytic method for the calculation of these
Externí odkaz:
http://arxiv.org/abs/1601.06586
Autor:
N. Samarinas, C. Evangelides
Publikováno v:
Water Supply, Vol 21, Iss 6, Pp 2893-2903 (2021)
The aim of this paper is to implement fuzzy logic theory in order to estimate the discharge for open channels, which is a well-known physical problem affected by many factors. The problem can be solved by the Manning equation but the parameters prese
Externí odkaz:
https://doaj.org/article/29b442f9a0834eb99c7d3768f39315e0
Publikováno v:
Water Supply, Vol 21, Iss 6, Pp 3210-3224 (2021)
In this article, the fuzzy numerical solution of the linearized one-dimensional Boussinesq equation of unsteady flow in a semi-infinite unconfined aquifer bordering a lake is examined. The equation describing the problem is a partial differential par
Externí odkaz:
https://doaj.org/article/f21ba68bae064667b87dcfc7300aee45
Publikováno v:
J. Math. Phys. 56, 072108 (2015)
An analytic representation with Theta functions on a torus, for systems with variables in Z(d), is considered. Another analytic representation with Theta functions on a strip, for systems with positions in a circle S and momenta in Z, is also conside
Externí odkaz:
http://arxiv.org/abs/1502.05309
Publikováno v:
Hydrology, Vol 10, Iss 5, p 107 (2023)
The process of how soil moisture profiles evolve into the soil and reach the root zone could be estimated by solving the appropriate strong nonlinear Richards’ equation. The nonlinearity of the equation occurs because diffusivity D is generally an
Externí odkaz:
https://doaj.org/article/8dac527e473545d5bad91a184a5346ab