Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Eva Bayer-Fluckiger"'
Autor:
Jean-Pierre Serre, Eva Bayer-Fluckiger
Publikováno v:
Indagationes Mathematicae. 32:920-938
The aim of this note is to give a formula expressing the trace form associated with the 27 lines of a cubic surface.
The aim of this paper is to revisit the question of local-global principles for embeddings of \'etale algebras with involution into central simple algebras with involution over global fields of characteristic not 2. A necessary and sufficient conditi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd23b71547e8760ef47a9ff951e1356c
http://arxiv.org/abs/2109.12532
http://arxiv.org/abs/2109.12532
Publikováno v:
Journal of the European Mathematical Society. 20:137-163
Embeddings of maximal tori into classical groups over global fields of characteristic not 2 are the subject matter of several recent papers, with special attention to the Hasse principle. The present paper gives necessary and sufficient conditions fo
Publikováno v:
Известия Российской академии наук. Серия математическая. 80:17-34
Autor:
Eva Bayer-Fluckiger, Piotr Maciak
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 27:689-697
Le but de cet article est de donner des bornes superieures pour les minima euclidiens de corps abeliens, en particulier dans le cas des corps abeliens de conducteurs des puissances de nombres premiers.
Publikováno v:
Pacific Journal of Mathematics
We prove that the category of systems of sesquilinear forms over a given hermitian category is equivalent to the category of unimodular 1-hermitian forms over another hermitian category. The sesquilinear forms are not required to be unimodular or def
Publikováno v:
Advances in Mathematics. 356:106818
A classical result of Hasse states that the norm principle holds for finite cyclic extensions of global fields, in other words local norms are global norms. We investigate the norm principle for finite dimensional commutative etale algebras over glob
Autor:
Eva Bayer-Fluckiger, Piotr Maciak
Publikováno v:
Mathematische Annalen. 357:1071-1089
The aim of this paper is to give upper bounds for the Euclidean minima of abelian fields of odd prime conductor. In particular, these bounds imply Minkowski's conjecture for totally real number fields of conductor p^r, where p is an odd prime and r i
Autor:
Eva Bayer-Fluckiger, Nivedita Bhaskhar
Publikováno v:
Documenta Mathematica. 18:383-392
Publikováno v:
Известия Российской академии наук. Серия математическая. 77:5-28