Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Eurica Henriques"'
Autor:
Eurica Henriques, Simone Ciani
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 14, Iss 2, Pp 56-76 (2024)
In this brief note we introduce Harnack-type inequalities, which are typical in the context of singular nonlinear parabolic operators, and describe their state of art in the context of anisotropic operators.
Externí odkaz:
https://doaj.org/article/43a3d7a84fc148e5bde3b3c7d0cbd12c
Autor:
Eurica Henriques
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2022, Iss 15, Pp 1-24 (2022)
We establish the expansion of positivity of the nonnegative, local, weak solutions to the class of doubly nonlinear parabolic equations $$\partial_t (u^{q}) -\operatorname{div}{(|D u|^{p-2} D u)}=0, \qquad\ p>1 \ \text{and} \ q>0$$ considering separa
Externí odkaz:
https://doaj.org/article/4e24e15fd9c143db814203718f5e800e
Publikováno v:
manuscripta mathematica. 168:165-179
In this paper we establish a stability result for the nonnegative local weak solutions to $$\begin{aligned} u_t= \text {div} \big (|Dw|^{p-2}Dw\big ) , \quad p>1 \end{aligned}$$ where $$w= \frac{u^\gamma -1}{\gamma }$$ and $$\gamma = \frac{m+p-2}{p-1
Autor:
Eurica Henriques
Publikováno v:
Journal of Evolution Equations. 21:1495-1511
The author presents a simplified proof for the local continuity of the weak solutions to the porous medium equation with variable positive bounded exponent $$\gamma (x,t)$$ $$\begin{aligned} u_t-\nabla \cdot \left( |u|^{\gamma (x,t)} \, \nabla u\righ
Autor:
Eurica Henriques, Rojbin Laleoglu
Publikováno v:
Journal of Dynamics and Differential Equations. 30:1029-1051
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincare inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of $$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^
Publikováno v:
Nonlinear Analysis. 205:112213
The aim of this paper is to present several properties of the nonnegative weak solutions to a class of very singular equations whose prototype is u t = div ( u m − 1 | D u | p − 2 D u ) , p > 1 and 3 − p m + p 2 . Namely, we prove L loc r and L
Autor:
Eurica Henriques, Rojbin Laleoglu
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 79:156-175
We establish the local Holder continuity for the nonnegative weak solutions of certain doubly nonlinear parabolic equations possessing a singularity in the time derivative part and a degeneracy in the principal part. The proof involves the method of
Autor:
Vincenzo Vespri, Eurica Henriques
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 75:2304-2325
We show that a locally bounded nonnegative weak solution of the general double degenerate parabolic equation u t − div a ( x , t , u , ∇ u ) = b ( x , t , u , ∇ u ) , satisfying the structure conditions a ( x , t , u , u ) ⋅ u ≥ ϕ ( | u |
Autor:
Eurica Henriques
Publikováno v:
Communications in Contemporary Mathematics. 22:1850054
We establish the local Hölder continuity for the nonnegative bounded weak solutions of a certain doubly singular parabolic equation. The proof involves the method of intrinsic scaling and the parabolic version of De Giorgi’s iteration method.
Autor:
José Miguel Urbano, Eurica Henriques
Publikováno v:
Indiana University Mathematics Journal. 55:1701-1722
We consider strongly degenerate equations in divergence form of the type ∂ t u - ∇ · (|u| γ(x,t) ∇u) = f, where the exponential nonlinearity satisfies the condition 0 < γ - ≤ y(x, t) ≤ γ + . We show, by means of intrinsic scaling, that