Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Eunyoung Son"'
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
We establish the general solution of the functional inequality and then investigate the generalized Hyers-Ulam stability of this inequality in Banach spaces and in non-Archimedean Banach spaces.
Externí odkaz:
https://doaj.org/article/25cc9174834649cba72ea3e6bb26ce48
Publikováno v:
Abstract and Applied Analysis, Vol 2012 (2012)
We prove the Hyers-Ulam stability of the following Jensen functional inequality ∥f((x-y)/n+z)+f((y-z)/n+x)+f((z-x)/n+y)∥≤∥f((x+y+z)∥ in p-Banach spaces for any fixed nonzero integer n.
Externí odkaz:
https://doaj.org/article/f4bfaa86bc2b42ea84ff0bdb92b4aef5
Publikováno v:
Journal of Inequalities and Applications, Vol 2010 (2010)
Cădariu and Radu applied the fixed point theorem to prove the stability theorem of Cauchy and Jensen functional equations. In this paper, we prove the generalized Hyers-Ulam stability via the fixed point method and investigate new theorems via direc
Externí odkaz:
https://doaj.org/article/eee445d507254c30b015bae28c5eef9c
Publikováno v:
Journal of Intellectual & Developmental Disability. :1-11
Autor:
Eunyoung Son, Hark-Mahn Kim
Publikováno v:
Filomat. 30:1969-1978
In this article, we investigate the generalized Hyers-Ulam stability of a cubic functional inequality in Banach spaces and in non-Archimedean Banach spaces by using fixed point method and direct method, respectively.
Publikováno v:
Kyungpook mathematical journal. 54:401-411
In this paper, we prove the generalized Hyers-Ulam stability of the following Jensen type functional equation in p-Banach spaces for any fixed nonzero integer n.
Publikováno v:
Journal of Inequalities & Applications. 2010, Vol. 2010, p1-15. 15p.
Publikováno v:
Abstr. Appl. Anal.
Abstract and Applied Analysis, Vol 2013 (2013)
Abstract and Applied Analysis, Vol 2013 (2013)
We establish the general solution of the functional inequality $∥f(x-y)+f(y-z)+f(x-z)-3f(x)-3f(y)-3f(z)∥\le ∥f(x+y+z)∥$ and then investigate the generalized Hyers-Ulam stability of this inequality in Banach spaces and in non-Archimedean Banac
Publikováno v:
Mathematical Inequalities & Applications. :1123-1136
In this article, we prove the generalized Hyers-Ulam stability of the following Cauchy additive functional equation f x −y n +z + f y −z n +x + f z −x n +y = f(x+y+z) in fuzzy Banach spaces for any fixed nonzero integer n.
Publikováno v:
Journal of Mathematical Inequalities. :461-471
Let n be a given positive integer, G an n-divisible abelian group, X a normed space and f : G → X. We prove a generalized Hyers-Ulam stabitity of the following functional in- equality � f(x)+f(y)+nf(z)� nf x+y