Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Eum Ick Sun"'
Autor:
Eum Ick Sun
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 527-606 (2023)
Let QQ be an integral positive definite quadratic form of level NN in 2k2k variables. Further, we assume that (−1)kN{\left(-1)}^{k}N is a fundamental discriminant. We express the average theta function of QQ as an explicit sum of Eisenstein series,
Externí odkaz:
https://doaj.org/article/b19930f5c6dd4c43aae0b31a7b0df98a
Autor:
Eum Ick Sun, Jung Ho Yun
Publikováno v:
Open Mathematics, Vol 17, Iss 1, Pp 1631-1651 (2019)
After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the
Externí odkaz:
https://doaj.org/article/b94e1e2746b0498d98f3bc4869d7f5e4
Let $K$ be an imaginary quadratic field of discriminant $d_K$, and let $\mathfrak{n}$ be a nontrivial integral ideal of $K$ in which $N$ is the smallest positive integer. Let $\mathcal{Q}_N(d_K)$ be the set of primitive positive definite binary quadr
Externí odkaz:
http://arxiv.org/abs/1810.06197
Autor:
Eum, Ick Sun, Kim, Kyoungmin
Publikováno v:
Ramanujan Journal; Jan2025, Vol. 66 Issue 1, p1-24, 24p
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2020) 695-720
Let $K$ be an imaginary quadratic field different from $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$. For a positive integer $N$, let $K_\mathfrak{n}$ be the ray class field of $K$ modulo $\mathfrak{n}=N\mathcal{O}_K$. By using the congruence s
Externí odkaz:
http://arxiv.org/abs/1712.04140
Autor:
Eum, Ick Sun
Publikováno v:
In Journal of Number Theory July 2021 224:1-12
Publikováno v:
In Journal of Number Theory April 2020 209:396-420
Autor:
Eum, Ick Sun, Shin, Dong Hwa
For a positive integer $N$ divisible by $4$, let $\mathcal{O}^1_N(\mathbb{Q})$ be the ring of weakly holomorphic modular functions for the congruence subgroup $\Gamma^1(N)$ with rational Fourier coefficients. We present explicit generators of the rin
Externí odkaz:
http://arxiv.org/abs/1501.04193
We show that every modular form on $\Gamma_0(2^n)$ ($n\geq2$) can be expressed as a sum of eta-quotients. Furthermore, we construct a primitive generator of the ring class field of the order of conductor $4N$ ($N\geq1$) in an imaginary quadratic fiel
Externí odkaz:
http://arxiv.org/abs/1401.4226
We show that a weakly holomorphic modular function can be written as a sum of modular units of higher level. We further find a necessary and sufficient condition for a Siegel modular function of degree $g$ to have neither zero nor pole on the domain
Externí odkaz:
http://arxiv.org/abs/1207.1609