Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Euler functions"'
Publikováno v:
Alexandria Engineering Journal, Vol 67, Iss , Pp 643-653 (2023)
In this paper, the distributed-order time fractional diffusion equation is introduced and studied. The Caputo fractional derivative is utilized to define this distributed-order fractional derivative. A hybrid approach based on the fractional Euler fu
Externí odkaz:
https://doaj.org/article/ae57d14885b14817aa066b5dcca24bfd
Autor:
Yuan He
Publikováno v:
Symmetry, Vol 15, Iss 7, p 1384 (2023)
In this paper, we perform a further investigation on the Apostol–Bernoulli and Apostol–Euler functions introduced by Luo. By using the Fourier expansions of the Apostol–Bernoulli and Apostol–Euler polynomials, we establish some symmetric iden
Externí odkaz:
https://doaj.org/article/73cb5dc1c0844496969e299d2c40a9ab
Publikováno v:
Symmetry, Vol 15, Iss 3, p 737 (2023)
Motivated by the recent work on the symmetric domains, this article investigates certain features of symmetric domain which are caused by the secant hyperbolic functions. Geometric characteristics of analytic functions associated with secant hyperbol
Externí odkaz:
https://doaj.org/article/8eb79eaea06b4877b121417564f05428
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-18 (2021)
Abstract The classical Dedekind sums appear in the transformation behavior of the logarithm of the Dedekind eta-function under substitutions from the modular group. The Dedekind sums and their generalizations are defined in terms of Bernoulli functio
Externí odkaz:
https://doaj.org/article/8d3ce6f064cc46d5a63bee34d235dc22
Publikováno v:
Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2018 Jan 01. 61(1), 39-49.
Externí odkaz:
https://www.jstor.org/stable/26423396
Autor:
He, Yuan
Publikováno v:
Symmetry; Volume 15; Issue 7; Pages: 1384
In this paper, we perform a further investigation on the Apostol–Bernoulli and Apostol–Euler functions introduced by Luo. By using the Fourier expansions of the Apostol–Bernoulli and Apostol–Euler polynomials, we establish some symmetric iden
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-13 (2018)
Abstract In this paper, a new set of functions called fractional-order Euler functions (FEFs) is constructed to obtain the solution of fractional integro-differential equations. The properties of the fractional-order Euler functions are utilized to c
Externí odkaz:
https://doaj.org/article/7c3a7f0ab3b74737a4e2f4a989690c29
Autor:
Kajla Arun, Araci Serkan
Publikováno v:
Open Physics, Vol 15, Iss 1, Pp 335-343 (2017)
In the paper the authors introduce the Kantorovich variant of Stancu operators based on Pólya-Eggenberger distribution. By making use of this new operator, we obtain some indispensable auxiliary results. We also deal with a Voronovskaja type asympto
Externí odkaz:
https://doaj.org/article/ebae09403c7844a1a073e8b733ac61cf
Publikováno v:
Mathematics, Vol 8, Iss 7, p 1164 (2020)
In this article, we introduce Stancu type generalization of Baskakov–Durrmeyer operators by using inverse Pólya–Eggenberger distribution. We discuss some basic results and approximation properties. Moreover, we study the statistical convergence
Externí odkaz:
https://doaj.org/article/bc01238f39fb49fda22b88a45ae62736