Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Eugen Beck"'
In this work, we show that a factored hybrid hidden Markov model (FH-HMM) which is defined without any phonetic state-tying outperforms a state-of-the-art hybrid HMM. The factored hybrid HMM provides a link to transducer models in the way it models p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa92b5643e3b4324719d420080d1592b
Publikováno v:
INTERSPEECH
Publikováno v:
INTERSPEECH
Interspeech 2020
Interspeech 2020
Phoneme-based acoustic modeling of large vocabulary automatic speech recognition takes advantage of phoneme context. The large number of context-dependent (CD) phonemes and their highly varying statistics require tying or smoothing to enable robust t
Publikováno v:
ICASSP
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Despite advances in neural language modeling, obtaining a good model on a large scale multi-domain dataset still remains a difficult task. We propose training methods for building neural language models for such a task, which are not only domain robu
Autor:
Markus Kitza, Albert Zeyer, Ralf Schlüter, Hermann Ney, Eugen Beck, Christoph Lüscher, Wilfried Michel, Kazuki Irie
Publikováno v:
INTERSPEECH
Interspeech 2019
Interspeech 2019
Publikováno v:
INTERSPEECH
Publikováno v:
IEEE transactions on pattern analysis and machine intelligence : TPAMI 41(2), 502-514 (2019). doi:10.1109/TPAMI.2017.2788434
IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE transactions on pattern analysis and machine intelligence : TPAMI 41(2), 502-514 (2019). doi:10.1109/TPAMI.2017.2788434
Published by IEEE, New York, NY
Published by IEEE, New York, NY
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3ad2d758a1651a92aa15d1215287377
https://publications.rwth-aachen.de/record/755689
https://publications.rwth-aachen.de/record/755689
Publikováno v:
INTERSPEECH
Interspeech 2017
Baixas, France : International Speech Communication Association, ISCA 944-948 (2017). doi:10.21437/Interspeech.2017-1073
Interspeech 2017 : Stockholm, Sweden, 20-24 August 2017 / chair: Francisco Lacerda
Interspeech 2017 : Stockholm, Sweden, 20-24 August 2017 / chair: Francisco Lacerda18. Annual Conference of the International Speech Communication Association, Interspeech 2017, Stockholm, Sweden, 2017-08-20-2017-08-24
Interspeech 2017
Baixas, France : International Speech Communication Association, ISCA 944-948 (2017). doi:10.21437/Interspeech.2017-1073
Interspeech 2017 : Stockholm, Sweden, 20-24 August 2017 / chair: Francisco Lacerda
Interspeech 2017 : Stockholm, Sweden, 20-24 August 2017 / chair: Francisco Lacerda18. Annual Conference of the International Speech Communication Association, Interspeech 2017, Stockholm, Sweden, 2017-08-20-2017-08-24
[Interspeech 2017, 2017-08-20 - 2017-08-20, Stockholm, Sweden] Interspeech 2017, Stockholm, Sweden, 20 Aug 2017 - 20 Aug 2017; Stockholm 944-948 (2017). doi:10.21437/Interspeech.2017-1073
Published by Stockholm
Published by Stockholm
Publikováno v:
Speech and Computer ISBN: 9783319664286
SPECOM
SPECOM
In this paper we describe the RWTH Aachen keyword search (KWS) system developed in the course of the IARPA Babel program. We put focus on acoustic modeling with neural networks and evaluate the full pipeline with respect to the KWS performance. At th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6e41be3a13539f4f33aa72a7e01100c1
https://doi.org/10.1007/978-3-319-66429-3_72
https://doi.org/10.1007/978-3-319-66429-3_72
Publikováno v:
INTERSPEECH
Scopus-Elsevier
Scopus-Elsevier