Zobrazeno 1 - 10
of 382
pro vyhledávání: '"Euclid's lemma"'
Autor:
Buchanan, Steven W., Hetzel, Andrew J.
Publikováno v:
The American Mathematical Monthly, 2020 May 01. 127(5), 401-410.
Externí odkaz:
https://www.jstor.org/stable/48662232
Autor:
Rounds, Bill
Publikováno v:
The American Mathematical Monthly, 2019 Mar 01. 126(3), 274-274.
Externí odkaz:
https://www.jstor.org/stable/48662504
Publikováno v:
The American Mathematical Monthly, 2016 Nov 01. 123(9), 924-927.
Autor:
Dudek, Adrian
We examine Euclid's lemma that if $p$ is a prime number such that $p | ab$, then $p$ divides at least one of $a$ or $b$. Specifically, we consider the common misapplication of this lemma to numbers that are not prime, as is often made by undergraduat
Externí odkaz:
http://arxiv.org/abs/1602.03555
Autor:
Andrew J. Hetzel, Steven W. Buchanan
Publikováno v:
The American Mathematical Monthly. 127:401-410
In the November 2016 issue of the Monthly, A. W. Dudek showed that the implication r | ab→r | aorr | b over positive integers is almost always false in a certain probabilistic sense. By considering...
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bill Rounds
Publikováno v:
The American Mathematical Monthly. 126:274-274
Autor:
Buchanan, Steven W., Hetzel, Andrew J.
Publikováno v:
American Mathematical Monthly; May 2020, Vol. 127 Issue: 5 p401-410, 10p
Autor:
Adrian W. Dudek
Publikováno v:
The American Mathematical Monthly. 123:924
We examine Euclid's lemma that if p is a prime number such that p |ab, then p divides at least one of a or b. Specifically, we consider the common misapplication of this lemma to numbers that are n...
Publikováno v:
American Mathematical Monthly. Mar2019, Vol. 126 Issue 3, p274-274. 3/4p.