Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Etilbenceno"'
Publikováno v:
Revista Técnica de la Facultad de Ingeniería, Vol 42, Iss 2 (2019)
Las propiedades catalíticas de materiales compuestos de arcilla-sílice mesoporosa modificada con cobalto fueron evaluadas para la deshidrogenación catalítica de etilbenceno a estireno. Los materiales fueron preparados incorporando diferentes cont
Externí odkaz:
https://doaj.org/article/cc6ed71801b441be88c2408b0498ce1b
Autor:
Ferri Vicedo, Pau
[ES] Toda esta disertación ha utilizado la química computacional como herramienta fundamental para el análisis científico. Por ello, en el Capítulo 2 se explican los modelos y métodos teóricos sobre este tema. La primera parte del capítulo se
Externí odkaz:
http://hdl.handle.net/10251/193493
Autor:
Omar Delgado-Rodríguez, David Flores-Hernández, Myriam A. Amezcua-Allieri, Vladimir Shevnin, Andrés Rosas-Molina, Salvador Marín-Córdova
Publikováno v:
Geofísica Internacional, Vol 53, Iss 2, Pp 183-198 (2014)
Debido a la ocurrencia de un derrame de gasolina en un área urbana, los métodos de Tomografía de Resistividad Eléctrica (TRE), Perfilaje Electromagnético (PEM) y de medición de Compuestos Orgánicos Volátiles (COV) fueron utilizados para defin
Externí odkaz:
https://doaj.org/article/cf7a0d72293b47b4bb8b0fbe8af990dc
Autor:
Varela, Maria do Carmo Rangel, Barral, Bruna Caroline de Oliveira, Lima , Simone Pereira de, Lima , Sirlene Barbosa
Publikováno v:
Research, Society and Development; Vol. 10 No. 2; e25810212425
Research, Society and Development; Vol. 10 Núm. 2; e25810212425
Research, Society and Development; v. 10 n. 2; e25810212425
Research, Society and Development
Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
Research, Society and Development; Vol. 10 Núm. 2; e25810212425
Research, Society and Development; v. 10 n. 2; e25810212425
Research, Society and Development
Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
Catalytic dehydrogenation of ethylbenzene with steam is the dominant technology for the industrial production of styrene, which is a raw material extensively used in the manufacture of plastics. The commercial catalyst consists of iron oxide doped wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::c63459677597530f98a62ff13f94e797
https://rsdjournal.org/index.php/rsd/article/view/12425
https://rsdjournal.org/index.php/rsd/article/view/12425
Autor:
Pascual Colomina, Pau
Publikováno v:
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
instname
[ES] En este proyecto se ha seleccionado y diseñado el proceso productivo de una planta de generación de etilbenceno. El trabajo pretende contrastar los distintos procesos industriales para la producción de etilbenceno, con el fin de establecer el
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4453c7962961bf3a1a9b433db55a595c
http://hdl.handle.net/10251/176036
http://hdl.handle.net/10251/176036
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
En este proyecto se ha llevado a cabo el desarrollo y simulación del proceso químico de producción del Etilbenceno, para luego realizar un estudio económico y presentar una propuesta de integración de energía mediante el diseño de una red vál
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::33fafab6a9e654015f02417b69b68adc
http://hdl.handle.net/10045/93307
http://hdl.handle.net/10045/93307
Autor:
Del Pino Gutiérrez, Rubén
Publikováno v:
Addi. Archivo Digital para la Docencia y la Investigación
instname
instname
[ES] El objeto del trabajo es proyectar una planta de fabricación de etilbenceno de 120.000 t/año. El trabajo consistirá en realizar una búsqueda bibliográfica sobre la fabricación de etilbenceno, incluyendo una discusión sobre las tendencias
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b6afbdab558393c7126afe8bcbed74a4
http://hdl.handle.net/10810/32718
http://hdl.handle.net/10810/32718
Autor:
Myriam A. Amezcua-Allieri, Omar Delgado-Rodríguez, Salvador Marín-Córdova, Vladimir Shevnin, David Flores-Hernández, Andrés Rosas-Molina
Publikováno v:
Scopus-Elsevier
ResumenDebido a la ocurrencia de un derrame de gasolina en un área urbana, los métodos de Tomografía de Resistividad Eléctrica (TRE), Perfilaje Electromagnético (PEM) y de medición de Compuestos Orgánicos Volátiles (COV) fueron utilizados par
Publikováno v:
Repositorio UdeA
Universidad de Antioquia
instacron:Universidad de Antioquia
Universidad de Antioquia
instacron:Universidad de Antioquia
RESUMEN: En este trabajo se presenta la validación del procedimiento analítico que permite determinar las concentraciones de Benceno (B), Tolueno (T), Etilbenceno (E) y Xilenos (X), compuestos conocidos como BTEX, presentes en el aire y adsorbidos
Publikováno v:
Revista Cientifica Guillermo de Ockham
ADDIEGO, W.P., LIU, W. & BOGER, T. (2001). “Iron oxide-based honeycomb catalysts for the dehydrogenation of ethylbenzene to styrene”. En Catalysis Today, 69, 25–31. ANDERSON, R.B. & DAWSON, P.T. (1976). Experimental Methods in Catalytic Research. Vol. II. p. 44-67. New York: Academic Press. ANDRESSA H. de Morais Batista; DE SOUSA Francisco F.; HONORATO Sara B., AYALA Alejandro P., Josue M. Filho, PINHEIRO Antonio N.,J.C.S. de Araújo, Ronaldo F. Nascimento, Antoninho Valentini & Alcineia C. Oliveira. (2010). “Ethylbenzene to chemicals: Catalytic conversion of ethylbenzene into styrene over metal-containing MCM-41”. En Journal of Molecular Catalysis A: Chemical, 315, 86–98. ATANDA, L.A., Al-Yassir, N.& Al-Khattaf, S. (2011). “Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts”. En Chemical Engineering Journal, 171, 1387– 1398. ATANDA, L.A., BALASAMY, R.J., KHURSHID, A., Al-Ali, A.A.S., SAGATA, K., ASAMOTO, M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. & Al-Khattaf, S.S. (2011). “Ethylbenzene dehy drogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−y NiyAl0.5 catalysts.” En Applied Catalysis A: General, 396, 107–115. BAGHALHA, M. & EBRAHIMPOUR, O.(2007). “Structural changes and surface activities of ethylbenzene dehydrogenation catalysts during deactivation.” En Applied Catalysis A: General, 326, 143–151. BALASAMY, R.J., KHURSHID, A., Al-Ali, A.A.S., ATANDA, L.A., SAGATA, K., ASAMOTO, M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. & Al-Khattaf, S.S. (2010). “Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites”. En Applied Catalysis A: General, 390, 225–234. BALASAMY, R.J., Tope, B.B., KHURSHID, A., AL-ALI, A., ATANDA, L.A., SAGATA, K., ASAMOTO,M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. y Al-KHATTAF, S.S. (2011). “Ethylbenzene dehydrogenation over FeOx/(Mg,Zn)(Al)O catalysts derived from hydrotalcites: Role of MgO as basic sites”. En Applied Catalysis A: General, 398, 113–122. BALKRISHNA B. Tope, RABINDRAN J. BALASAMY, ALAM Khurshid, LUQMAN A. ATANDA, HIDENORI Yahiro, TETSUYA Shishido, KATSUOMI Takehira, SULAIMAN S. Al-KHATTAF. (2011). “Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites”. En Applied Catalysis A: General, 407, 118– 126. BAUTISTA, F., Campelo, J., LUNA, D., MARINAS, J., QUIROS, R. & ROMERO, A. (2007). “Screening of amorphous metal–phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene”. En Applied Catalysis B, 70, 611–620. BISPO, J.R.C., OLIVEIRA, A.C., CORREA, M.L.S., FIERRO, J.L.G., MARCHETTI, S.G. & RANGEL, M.C.(2002). “Characterization of FeMCM-41 and FeZSM-5 Catalysts Production to Styrene”. En Studies in Surface Science and Catalysis, 142, 517-524. BLANCO, J. y LINARTE, R. (1971). Catálisis, fundamentos y aplicaciones industriales. México: Ed. Trillar. BOND, G.C. (1962). Catalysis by Metals. London: Academic Press. BOSA Poveda, J. (1994). Estudio de la deshidrogenación catalítica del etilbenceno a estireno en un reactor de lecho fijo. Tesis Ing. Química. Universidad Nacional de Colombia. Bogotá. BURRI, D.R., CHOI, K.M., HAN, D.S., Koo, J.B. & PARK, S.E. (2006). “CO2 utilization as an oxidant in the dehydrogenation of ethylbenzene to styrene over MnO2-ZrO2 catalysts”. En Catalysis Today, 115, 242–247. BURRI, D.R., CHOI, K.M., LEE, J.H., HAN, D.S. & PARK, S.E. (2007). “Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2”. En Catalysis Communications, 8, 43–48. BURRI, D.J., CHOI, K.M., HAN, S.C., BURRI, A., & PARK, S.E. (2007). “Selective conversion of ethylbenzene into styrene over K2O/TiO2-ZrO2 catalysts: Unified effects of K2 O and CO2”. En Journal of Molecular Catalysis A: Chemical, 269, 58–63. CAMPANATI, M., FORNASANI, G. Y VACCARI, A. (2003). “Fundamentals in the preparation of heterogeneous catalysts”. En Catalysis Today, 77, 299-314. CARBALLO, L. (2002). Introducción a la Catálisis Heterogénea. Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá: ed. Unidad de Publicaciones. CARBERRY, J.I. (1980). Ingeniería de las Reacciones Químicas y Catalíticas. Buenos Aires: Editorial Géminis S. R. L. CARJA, G., KAMESHIMA, Y. & OKADA, K. (2008). “Nanoparticles of iron and vanadium oxides supported on iron substituted LDHs: Synthesis, textural characterization and their catalytic behavior in ethylbenzene dehydrogenation”. En Microporous and Mesoporous Materials, 115, 541–547. CARJA, G., NAKAMURA, R. Aida, T. & NIIYAMA, H. (2003). “Mg–V–Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow”. En Journal of Catalysis, 218, 104–110. CAUSADO, R. (2005). Desarrollo de Nuevos Catalizadores tipo NiMo, NiMo/CaO, FeMo, Fe2O3/CaO y Mo/γ-Al2 O3 como posibles alternativas para la reacción de Deshidrogenación de Etilbenceno en presencia de CO2 y vapor de agua en la producción de Estireno. Tesis para obtención del grado de Químico, Unicartagena–Licatuc (Colombia). CHEN Shuwei, QIN Zhangfeng, SUN Ailing & WANG Jianguo. (2009). Effects of Li Promoter on the Catalytic Performance of Fe-Li/AC for Ethylbenzene Dehydrogenation in the Presence of CO2. Chin J Catal, 30(4), 359–364. CHEN, S., Qin, Z., XU, X. & Wang, J. (2006). “Structure and properties of the alumina-supported vanadia catalysts for ethylbenzene dehydrogenation in the presence of carbon dioxide”. En Applied Catalysis A: General, 302, 185–192. CONCEIÇÃO Oliveira A. & DO CARMO Rangel, M. (2003). “Desidrogenação Do Etilbenzeno Sobre Compostos De Ferro E Alumínio”. En Quim. Nova, 26(2), 170-176. CONCEIÇÃO, A., FIERRO, J., VALENTÍN, A., SANTANA, P. y DO CARMO, M. (2003). Catalysis Today, 85, 49-57. DE ARAÚJO J., SOUSA C., OLIVEIRA A., FREIRE, F., AYALA, A. y OLIVEIRA, A. (2010). “Dehydrogenation of ethylbenzenewith CO2 to produce styrene over Fe-containing ceramic composites”. En Applied Catalysis A: General, 377, 55–63. DE MORAIS Batista, RAMOS A.H., BRAGA F.S.O., LIMA T.P., C.L., DE SOUSA, F.F., BARROS, E.B.D., FILHO, J.M., de Oliveira, A.S., de Sousa, J.R., VALENTINI, A. & Oliveira, A.C. (2010). “Mesoporous MAl2 O4 (M= Cu, Ni, Fe or Mg) spinels: Characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2”. En Applied Catalysis A: General, 382, 148–157. DE SOUZA Ramos, M., DE SANTANA Santos, M., PACHECO Gomes, L., ALBORNOZ, A. y DO CARMO Rangel M. (2008). “The influence of dopants on the catalytic activity of hematite in the ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 341, 12–17. DIAS Holtz, R., DE OLIVEIRA, S.B., FRAGA, M.A. & DO CARMO Rangel, M. (2008). “Synthesis and characterization of polymeric activated carbon-supported vanadium and magnesium catalysts for ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 350, 79–85. DROGUETT, S. (1983). Elementos de la Catálisis Heterogénea. Monografía N° 26. Secretaría General de la Organización de los Estados Americanos. Washington, D.C. 12-15, 38-40 y 90-91. DULAMITA, N., MAICANEANU A., SAYLE D.C., STANCA, M., CRACIUN, R., OLEA, M., AflOROAEI, C. y FODOR, A.(2005). “Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides”. En Applied Catalysis A: General, 287, 9–18. DZIEWIECKI, Z. & OZDOBA, E. (1991). Preparation of Catalysts V. Amsterdam: Elsevier Science Publishers B.V. FAROLDOS, M. y GOBERNA, C. (2002). Técnicas en el análisis y caracterización de materiales. Consejo Superior de Investigaciones Científicas, CSIC. Madrid, España. FREIRE, R.M., DE SOUSA, F.F., PINHEIRO, A.L., LONGHINOTTI, E., MENDES Filho, J., OLIVEIRA, A.C., DE TARSO, P., FREIRE, C., AYALA, A.P. & OLIVEIRA, A.C.(2009). “Studies of catalytic activity and coke deactivation of spinel oxides during ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 359, 165–179. GAO, Z., ZHANG, B. Y CUI, J. (1991). Applied Catalysis A: General, 12, 332 HABER, J. (1991). “Manual on Catalyst Characterization”. En Pure and Applied Chemistry, 63 (9), 1227-1246. HONG, D.Y., CHANG, J.S., LEE, J.H., VISLOVSKIY, W.P., JHUNG, S.H., PARK, S.E. & PARK, Y.H. (2006). “Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium–antimony oxide catalyst”. En Catalysis Today, 112, 86–88. HUERTA, L., MEYER, A. & CHOREN, E. (2003). “Synthesis, characterization and catalytic application for ethylbenzene dehydrogenation of an iron pillared clay”. En Microporous and Mesoporous Materials, 57, 219–227. HURST, N.W., GENTRY, S.J., JONES, A. y MCNICOL, B.D. (1982). Temperature Programmed Reduction. Catal. Rev. Sci. Eng. 24 (2), 233-309. IKENAGA, N.O., TSURUDA, T., SENMA, K., YAMAGUCHI, T., SAKURAI, Y. & SUZUKI, T. (2000). “Dehydrogenation of Ethylbenzene with Carbon Dioxide Using Activated Carbon-Supported Catalysts”. En Ind. Eng. Chem. Res. 39, 1228-1234. JI, M., CHEN, G., WANG, J., WANG, X. y ZHANG, T. (2010). “Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts”. En Catalysis Today. 158, 464–469. JONES, A. & MCNICOL, B.D. ( 1986). “Temperature-Programmed Reduction for Solid Materials Characterization”. En Chemical Industries/24. Usa: Marcel Dekker, Inc. KHATAMIAN, M., KHANDAR, A.A., HAGHIGHI, M. & GHADIRI, M. (2011). “Nano ZSM-5 type ferrisilicates as novel catalysts for ethylbenzenedehydrogenation in the presence of N2O”. En Applied Surface Science. 258, 865– 872. KIRK, Othmer. (1997). Enciclopedia of Chemical Technology, 4ta Edición KOTARBA, A., BIENIASZ, W., KUSTROWSKI, P., STADNICKA, K. & SOJKA, Z. (2011). “Composite ferrite catalyst for ethylbenzene dehydrogenation: Enhancement ofpotassium stability and catalytic performance by phase selective doping”. En Applied Catalysis A: General. 407, 100–105. KUSTROWSKI, P., ŁASOCHA, A.R., MAJDA, D., TOMASZEWSKA, D. & DZIEMBAJ, R. (2001). “Preparation and characterization of new Mg–Al–Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the presence of carbon dioxide”. En Solid State Ionics.141–142, 237–242. LANGE, Jean-Paul y OTTEN, Vincent. (2006). “Dehydration of phenyl-ethanol to styrene: Zeolite catalysis under reactive distillation”. En Journal of Catalysis.238, 6–12. LI, Z., & SHANKS, E.H. (2011). “Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation”. En Aplied Catalysis A: General. 405, 101– 107. LIAO, S.J., CHEN, T., MIAO, C.X., YANG, W.M., Xie, Z.K. & CHEN, Q.L. (2008). “Effect of TiO2 on the structure and catalytic behavior of iron–potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene”. En Catalysis Communications. 9, 1817–1821. MATSUI, J., SODESAWA, T. y NURAKI, F. (1990). “Influence of carbon dioxide addition upon decay of activity of a potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene”. En Applied Catalysis A: General. 67, 179. Meima, G.R. & MENON, P.G. (2001). “Catalyst deactivation phenomena in styrene production”. En Applied Catalysis A: General. 212, 239–245. MIMURA, N. & SAITO, M. (2000). “Dehydrogenation of ethylbenzene to styrene over Fe2 O3/Al2O3 catalysts in the presence of carbon dioxide”. En Catalysis Today. 55. 173–178. Mimura, N. y Saito, M. (1999). “Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide”. En Catalysis Today. 55, 173-178. MIMURA, N., TAKANARA, L., SAITO, M., HATTORI, T., OHKUMA, M. y ANDO, M. (1998). “Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide”. En Catalysis Today. 45, 61. MIMURA, N., TAKANARA, L., SAITO, M., HATTORI, T., OHKUMA, M. y ANDO, M. (1998). “Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide”. En Studies Surfaces Catalysis.114, 415. MIYAKOSHI, A., UENO, A. y ICHIKAWA, M. (2001). “Mn-substituted Fe–K mixed oxide catalysts for dehydrogenation of ethylbenzene towards styrene”. En Applied Catalysis A: General. 216, 137–146. MIYAKOSHI, A., UENO, A. y ICHIKAWA, M. (2001). “XPS and TPD characterization of manganesesubstituted iron–potassium oxide catalysts which are selective for dehydrogenation of ethylbenzene into styrene”. En Applied Catalysis A: General. 219, 249–258. MONTI, D.A.M. & BAIKER, A. (1983). “Temperature-Programmed Reduction. Parametric Sensitivity and Estimation of Kinetic Parameters”. En Journal of Catalysis. 83 323-335. MORONTA, A., TROCONIS, M.E., GONZÁLEZ, E., MORÁN, C., SÁNCHEZ, J., GONZÁLEZ, A. & QUIÑÓNEZ, J. (2006). Dehydrogenation of ethylbenzene to styrene catalyzed by Co, Mo and CoMo catalysts supported on natural and aluminum-pillared clays. Effect of the metal reduction. Applied Catalysis A: General.310, 199–204. NEDERLOF, C., KAPTEIJN, F. & MAKKEE, M. (2012). “Catalysed ethylbenzene dehydrogenation in CO2 or N2 Carbon deposits as theactive phase”. En Applied Catalysis A: General. 417– 418, 163– 173. NEDERLOF, C., TALAY, G., KAPTEIJN, F.& MAKKEE, M. (2012). “The role of RWGS in the dehydrogenation of ethylbenzene to styrene in CO2”. En Applied Catalysis A: General.423– 424, 59– 68. NIETO, S. (2001). Síntesis y caracterización de molibdatos y heteropolimolibdatos de cobre como posible utilización en catálisis. Tesis para obtención del grado de Químico. Universidad de Cartagena-I.V.I.C. Cartagena. NOGUEIRA, I.M., SABADIA, G. Q., MOREIRA, A.A., FILHO, J.M. & OLIVEIRA, A.C. (2011). “Investigation of the deactivation of iron nanocomposites by coking in dehydrogenation of ethylbenzene”. En Journal of Molecular Catalysis A: Chemical. 351, 81– 92. OHISHI, Y., KAWABATA, T., SHISHIDO, T., TAKAKI, K., ZHANG, Q., WANG, Y., NOMURA, K. & Takehira, K. (2005). “Mg–Fe–Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: Catalytic behavior in ethylbenzene dehydrogenation”. En Applied Catalysis A: General. 288, 220–231. PARK, M.S., VISLOVSKIY, V.P., CHANG, J.S., SHUL, Y.G., YOO, J.S. & PARK, S.E.(2003). “Catalytic dehydrogenation of ethylbenzene with carbon dioxide: promotional effect of antimony in supported vanadium–antimony oxide catalyst”. En Catalysis Today. 87, 205–212. PENG Feng, FU Xiao-bo, YU Hao, WANG Hong-Juan.(2007). Preparation of carbon nanotube-supported Fe2 O3 catalysts and their catalytic activities for ethylbenzene dehydrogenation. New Carbon Materials. 22 (3), 213–217. PINHEIRO Braga, T., LONGHINOTTI, E., PINHEIRO, A.N. & VALENTINI, A. (2009). “Synthesis of hybrid spheres for the dehydrogenation of ethylbenzene in the presence of CO2”. En Applied Catalysis A: General. 362, 139–146. PONOMOREVA, O.A, YUSCHENKO, V.V., LVANOVA, I.I., PASQUA, L., TESTA, F., Di RENZO, F. & FAJULA, F. (2004). “Dehydrogenation of Ethylbenzene Over Ga-And Fe-Containing MCM-41”. En Studies in Surface Science and Catalysis. 154, 2208-2211. ROSSETTI, I., BENCINI, E., TRENTINI, L., FORNI, L. (2005). “Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene”. En Applied Catalysis A: General. 292, 118–123. SAITO, K., OKUDA, K., IKENAGA, N.O., MIYAKE, T. & SUZUKI, T. (2010). “Role of Lattice Oxygen of Metal Oxides in the Dehydrogenation of Ethylbenzene under a Carbon Dioxide Atmosphere”. En J. Phys. Chem. A. 114, 3845–3854. Saito, M., KIMURA, H., MIMURA, N., Wu, J. y MURATA, K. (2003). “Dehydrogenation of ethylbenzene in the presence of CO2 over an alumina-supported iron oxide catalyst”. En Applied Catalysis A: General. 239, 71-77. SAITO, M., KIMURA, H., MIMURA, N., WU, J. y MURATA, K. (2003). “Dehydrogenation of ethylbenzene in the presence of CO2 over an alumina-supported iron oxide catalyst”. En Applied Catalysis A: General. 239, 71-77. SAKURAI, Y., SUZAKI, T., NAKAGAWA, K., IKENAGA, N., AOTA, H. y Suzuki, T. (2002). Journal of Catalysis. 209(1),16-24. SANTOS M.D.S., ALBORNOZ, A. & DO CARMO Rangel, M. (2006). “The influence of the preparation method on the catalytic properties of Lanthanum-doped hematite in the ethylbenzene dehydrogenation”. En Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier B.V, 753-760. SANTOS, M.D.S., MARCHETTI, S.G., ALBORNOZ, A. & DO CARMO Rangel, M. (2008). “Effect of lanthanum addition on the properties of potassium-free catalysts for ethylbenzene dehydrogenation”. En Catalysis Today. 133–135 160–167. SECRETARÍA GENERAL DE LA ORGANIZACIÓN DE LOS ESTADOS AMERICANOS (1980). La espectroscopía infrarroja. Washington, D.C. SHEKHAH, O., RANKE, W. & SCHLÖGL, R. (2004). “Styrene synthesis: in situ characterization and reactivity studies of unpromoted and potassium-promoted iron oxide model catalysts”. En Journal of Catalysis. 225, 56–68. STYLES, A. B. (1983). Applied Industrial Catalysis. New York: Academic Press. SUGINO, M., SHIMADA, H., TURUDA, T., MIURA, H., IKENAGA, N. & SUZUKI, T. (1995). “Oxidative dehydrogenation of ethylbenzene with carbon dioxide”. En Applied Catalysis A: General.121, 125-137. SUN, A., QIN, Z., Chen, S. & WANG, J. (2004). “Ethylbenzene dehydrogenation in the presence of carbon dioxide over alumina supported catalysts”. En Catalysis Today. 93–95, 273–279. SUN, A., QIN, Z., CHEN, S. & WANG, J. (2004). “Role of carbon dioxide in the ethylbenzene dehydrogenation coupled with reverse water–gas shift”. En Journal of Molecular Catalysis A: Chemical. 210, 189–195. VISLOVSKIY, V.P., CHANG, J.S., PARK, M.S. & PARK, S.E. (2002). “Ethylbenzene into styrene with carbon dioxide over modified vanadia–alumina catalysts”. En Catalysis Communications. 3, 227–231. XIANG Bin, XU HENGYONG & LI Wenzhou. (2007). “Highly efficient nano-sized Fe2 O3–K2 O catalyst for dehydrogenation of ethylbenzene to styrene”. En Chinese Journal of Catalysis. 28(10). 841–843. XU, J., HUANG, J., LIU, Y., Cao, Y.,Li, Y. y FAN, K. (2011). Catal. Lett. 141, 198–206. XU, J., XUE, B., LIU, Y., LI, Y., CAO Y. y FAN, K. (2011). “Mesostructured Ni-doped ceria as an efficient catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene”. En Applied Catalysis A: General. 405, 142–148. YE, X., MA, N., HUA, W., YUE, Y., MIAO, C., XIE, Z. & GAO, Z. (2004). “Dehydrogenation of ethylbenzene in the presence of CO2 over catalysts prepared from hydrotalcite-like precursors”. En Journal of Molecular Catalysis A: Chemical. 217, 103–108. ZHAO, T.J., SUN, Y.J., GU, X.Y., LI, P., CHEN, D., DAI, D.Y., YUAN, W.K. & Holmen, A. (2006). “Dehydrogenation of ethylbenzene with carbon nanofiber supported iron oxide carbon dioxide over”. En Studies in Surface Science and Catalysis, 159, 741-744. ZHU, X.M., SCHÖN, M., BARTMANN, U., VAN VEEN, A.C. y MUHLER, M. (2004). “The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study”. En Applied Catalysis A: General. 266, 99–108. ZHYZNEVSKIY, V.M., TSYBUKH, R.D., GUMENETSKIY V.V. y KOCHUBEIY V.V. (2003). “Physicochemical and catalytic properties of Fe2 BiMo2 Ox catalyst ultrasound treated and promoted with Al2O3 in the oxidative dehydrogenation of ethylbenzene to styrene”. En Applied Catalysis A: General. 238, 19–28
Universidad de San Buenaventura-Cali
Cali, Hemeroteca 3er. piso
Biblioteca Digital Universidad de San Buenaventura
Repositorio USB
Universidad de San Buenaventura
instacron:Universidad de San Buenaventura
Revista Guillermo de Ockham, Vol 11, Iss 1 (2013)
ADDIEGO, W.P., LIU, W. & BOGER, T. (2001). “Iron oxide-based honeycomb catalysts for the dehydrogenation of ethylbenzene to styrene”. En Catalysis Today, 69, 25–31. ANDERSON, R.B. & DAWSON, P.T. (1976). Experimental Methods in Catalytic Research. Vol. II. p. 44-67. New York: Academic Press. ANDRESSA H. de Morais Batista; DE SOUSA Francisco F.; HONORATO Sara B., AYALA Alejandro P., Josue M. Filho, PINHEIRO Antonio N.,J.C.S. de Araújo, Ronaldo F. Nascimento, Antoninho Valentini & Alcineia C. Oliveira. (2010). “Ethylbenzene to chemicals: Catalytic conversion of ethylbenzene into styrene over metal-containing MCM-41”. En Journal of Molecular Catalysis A: Chemical, 315, 86–98. ATANDA, L.A., Al-Yassir, N.& Al-Khattaf, S. (2011). “Kinetic modeling of ethylbenzene dehydrogenation over hydrotalcite catalysts”. En Chemical Engineering Journal, 171, 1387– 1398. ATANDA, L.A., BALASAMY, R.J., KHURSHID, A., Al-Ali, A.A.S., SAGATA, K., ASAMOTO, M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. & Al-Khattaf, S.S. (2011). “Ethylbenzene dehy drogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−y NiyAl0.5 catalysts.” En Applied Catalysis A: General, 396, 107–115. BAGHALHA, M. & EBRAHIMPOUR, O.(2007). “Structural changes and surface activities of ethylbenzene dehydrogenation catalysts during deactivation.” En Applied Catalysis A: General, 326, 143–151. BALASAMY, R.J., KHURSHID, A., Al-Ali, A.A.S., ATANDA, L.A., SAGATA, K., ASAMOTO, M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. & Al-Khattaf, S.S. (2010). “Ethylbenzene dehydrogenation over binary FeOx–MeOy/Mg(Al)O catalysts derived from hydrotalcites”. En Applied Catalysis A: General, 390, 225–234. BALASAMY, R.J., Tope, B.B., KHURSHID, A., AL-ALI, A., ATANDA, L.A., SAGATA, K., ASAMOTO,M., YAHIRO, H., NOMURA, K., SANO, T., TAKEHIRA, K. y Al-KHATTAF, S.S. (2011). “Ethylbenzene dehydrogenation over FeOx/(Mg,Zn)(Al)O catalysts derived from hydrotalcites: Role of MgO as basic sites”. En Applied Catalysis A: General, 398, 113–122. BALKRISHNA B. Tope, RABINDRAN J. BALASAMY, ALAM Khurshid, LUQMAN A. ATANDA, HIDENORI Yahiro, TETSUYA Shishido, KATSUOMI Takehira, SULAIMAN S. Al-KHATTAF. (2011). “Catalytic mechanism of the dehydrogenation of ethylbenzene over Fe–Co/Mg(Al)O derived from hydrotalcites”. En Applied Catalysis A: General, 407, 118– 126. BAUTISTA, F., Campelo, J., LUNA, D., MARINAS, J., QUIROS, R. & ROMERO, A. (2007). “Screening of amorphous metal–phosphate catalysts for the oxidative dehydrogenation of ethylbenzene to styrene”. En Applied Catalysis B, 70, 611–620. BISPO, J.R.C., OLIVEIRA, A.C., CORREA, M.L.S., FIERRO, J.L.G., MARCHETTI, S.G. & RANGEL, M.C.(2002). “Characterization of FeMCM-41 and FeZSM-5 Catalysts Production to Styrene”. En Studies in Surface Science and Catalysis, 142, 517-524. BLANCO, J. y LINARTE, R. (1971). Catálisis, fundamentos y aplicaciones industriales. México: Ed. Trillar. BOND, G.C. (1962). Catalysis by Metals. London: Academic Press. BOSA Poveda, J. (1994). Estudio de la deshidrogenación catalítica del etilbenceno a estireno en un reactor de lecho fijo. Tesis Ing. Química. Universidad Nacional de Colombia. Bogotá. BURRI, D.R., CHOI, K.M., HAN, D.S., Koo, J.B. & PARK, S.E. (2006). “CO2 utilization as an oxidant in the dehydrogenation of ethylbenzene to styrene over MnO2-ZrO2 catalysts”. En Catalysis Today, 115, 242–247. BURRI, D.R., CHOI, K.M., LEE, J.H., HAN, D.S. & PARK, S.E. (2007). “Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2”. En Catalysis Communications, 8, 43–48. BURRI, D.J., CHOI, K.M., HAN, S.C., BURRI, A., & PARK, S.E. (2007). “Selective conversion of ethylbenzene into styrene over K2O/TiO2-ZrO2 catalysts: Unified effects of K2 O and CO2”. En Journal of Molecular Catalysis A: Chemical, 269, 58–63. CAMPANATI, M., FORNASANI, G. Y VACCARI, A. (2003). “Fundamentals in the preparation of heterogeneous catalysts”. En Catalysis Today, 77, 299-314. CARBALLO, L. (2002). Introducción a la Catálisis Heterogénea. Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá: ed. Unidad de Publicaciones. CARBERRY, J.I. (1980). Ingeniería de las Reacciones Químicas y Catalíticas. Buenos Aires: Editorial Géminis S. R. L. CARJA, G., KAMESHIMA, Y. & OKADA, K. (2008). “Nanoparticles of iron and vanadium oxides supported on iron substituted LDHs: Synthesis, textural characterization and their catalytic behavior in ethylbenzene dehydrogenation”. En Microporous and Mesoporous Materials, 115, 541–547. CARJA, G., NAKAMURA, R. Aida, T. & NIIYAMA, H. (2003). “Mg–V–Al mixed oxides with mesoporous properties using layered double hydroxides as precursors: catalytic behavior for the process of ethylbenzene dehydrogenation to styrene under a carbon dioxide flow”. En Journal of Catalysis, 218, 104–110. CAUSADO, R. (2005). Desarrollo de Nuevos Catalizadores tipo NiMo, NiMo/CaO, FeMo, Fe2O3/CaO y Mo/γ-Al2 O3 como posibles alternativas para la reacción de Deshidrogenación de Etilbenceno en presencia de CO2 y vapor de agua en la producción de Estireno. Tesis para obtención del grado de Químico, Unicartagena–Licatuc (Colombia). CHEN Shuwei, QIN Zhangfeng, SUN Ailing & WANG Jianguo. (2009). Effects of Li Promoter on the Catalytic Performance of Fe-Li/AC for Ethylbenzene Dehydrogenation in the Presence of CO2. Chin J Catal, 30(4), 359–364. CHEN, S., Qin, Z., XU, X. & Wang, J. (2006). “Structure and properties of the alumina-supported vanadia catalysts for ethylbenzene dehydrogenation in the presence of carbon dioxide”. En Applied Catalysis A: General, 302, 185–192. CONCEIÇÃO Oliveira A. & DO CARMO Rangel, M. (2003). “Desidrogenação Do Etilbenzeno Sobre Compostos De Ferro E Alumínio”. En Quim. Nova, 26(2), 170-176. CONCEIÇÃO, A., FIERRO, J., VALENTÍN, A., SANTANA, P. y DO CARMO, M. (2003). Catalysis Today, 85, 49-57. DE ARAÚJO J., SOUSA C., OLIVEIRA A., FREIRE, F., AYALA, A. y OLIVEIRA, A. (2010). “Dehydrogenation of ethylbenzenewith CO2 to produce styrene over Fe-containing ceramic composites”. En Applied Catalysis A: General, 377, 55–63. DE MORAIS Batista, RAMOS A.H., BRAGA F.S.O., LIMA T.P., C.L., DE SOUSA, F.F., BARROS, E.B.D., FILHO, J.M., de Oliveira, A.S., de Sousa, J.R., VALENTINI, A. & Oliveira, A.C. (2010). “Mesoporous MAl2 O4 (M= Cu, Ni, Fe or Mg) spinels: Characterisation and application in the catalytic dehydrogenation of ethylbenzene in the presence of CO2”. En Applied Catalysis A: General, 382, 148–157. DE SOUZA Ramos, M., DE SANTANA Santos, M., PACHECO Gomes, L., ALBORNOZ, A. y DO CARMO Rangel M. (2008). “The influence of dopants on the catalytic activity of hematite in the ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 341, 12–17. DIAS Holtz, R., DE OLIVEIRA, S.B., FRAGA, M.A. & DO CARMO Rangel, M. (2008). “Synthesis and characterization of polymeric activated carbon-supported vanadium and magnesium catalysts for ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 350, 79–85. DROGUETT, S. (1983). Elementos de la Catálisis Heterogénea. Monografía N° 26. Secretaría General de la Organización de los Estados Americanos. Washington, D.C. 12-15, 38-40 y 90-91. DULAMITA, N., MAICANEANU A., SAYLE D.C., STANCA, M., CRACIUN, R., OLEA, M., AflOROAEI, C. y FODOR, A.(2005). “Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides”. En Applied Catalysis A: General, 287, 9–18. DZIEWIECKI, Z. & OZDOBA, E. (1991). Preparation of Catalysts V. Amsterdam: Elsevier Science Publishers B.V. FAROLDOS, M. y GOBERNA, C. (2002). Técnicas en el análisis y caracterización de materiales. Consejo Superior de Investigaciones Científicas, CSIC. Madrid, España. FREIRE, R.M., DE SOUSA, F.F., PINHEIRO, A.L., LONGHINOTTI, E., MENDES Filho, J., OLIVEIRA, A.C., DE TARSO, P., FREIRE, C., AYALA, A.P. & OLIVEIRA, A.C.(2009). “Studies of catalytic activity and coke deactivation of spinel oxides during ethylbenzene dehydrogenation”. En Applied Catalysis A: General, 359, 165–179. GAO, Z., ZHANG, B. Y CUI, J. (1991). Applied Catalysis A: General, 12, 332 HABER, J. (1991). “Manual on Catalyst Characterization”. En Pure and Applied Chemistry, 63 (9), 1227-1246. HONG, D.Y., CHANG, J.S., LEE, J.H., VISLOVSKIY, W.P., JHUNG, S.H., PARK, S.E. & PARK, Y.H. (2006). “Effect of carbon dioxide as oxidant in dehydrogenation of ethylbenzene over alumina-supported vanadium–antimony oxide catalyst”. En Catalysis Today, 112, 86–88. HUERTA, L., MEYER, A. & CHOREN, E. (2003). “Synthesis, characterization and catalytic application for ethylbenzene dehydrogenation of an iron pillared clay”. En Microporous and Mesoporous Materials, 57, 219–227. HURST, N.W., GENTRY, S.J., JONES, A. y MCNICOL, B.D. (1982). Temperature Programmed Reduction. Catal. Rev. Sci. Eng. 24 (2), 233-309. IKENAGA, N.O., TSURUDA, T., SENMA, K., YAMAGUCHI, T., SAKURAI, Y. & SUZUKI, T. (2000). “Dehydrogenation of Ethylbenzene with Carbon Dioxide Using Activated Carbon-Supported Catalysts”. En Ind. Eng. Chem. Res. 39, 1228-1234. JI, M., CHEN, G., WANG, J., WANG, X. y ZHANG, T. (2010). “Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts”. En Catalysis Today. 158, 464–469. JONES, A. & MCNICOL, B.D. ( 1986). “Temperature-Programmed Reduction for Solid Materials Characterization”. En Chemical Industries/24. Usa: Marcel Dekker, Inc. KHATAMIAN, M., KHANDAR, A.A., HAGHIGHI, M. & GHADIRI, M. (2011). “Nano ZSM-5 type ferrisilicates as novel catalysts for ethylbenzenedehydrogenation in the presence of N2O”. En Applied Surface Science. 258, 865– 872. KIRK, Othmer. (1997). Enciclopedia of Chemical Technology, 4ta Edición KOTARBA, A., BIENIASZ, W., KUSTROWSKI, P., STADNICKA, K. & SOJKA, Z. (2011). “Composite ferrite catalyst for ethylbenzene dehydrogenation: Enhancement ofpotassium stability and catalytic performance by phase selective doping”. En Applied Catalysis A: General. 407, 100–105. KUSTROWSKI, P., ŁASOCHA, A.R., MAJDA, D., TOMASZEWSKA, D. & DZIEMBAJ, R. (2001). “Preparation and characterization of new Mg–Al–Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the presence of carbon dioxide”. En Solid State Ionics.141–142, 237–242. LANGE, Jean-Paul y OTTEN, Vincent. (2006). “Dehydration of phenyl-ethanol to styrene: Zeolite catalysis under reactive distillation”. En Journal of Catalysis.238, 6–12. LI, Z., & SHANKS, E.H. (2011). “Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation”. En Aplied Catalysis A: General. 405, 101– 107. LIAO, S.J., CHEN, T., MIAO, C.X., YANG, W.M., Xie, Z.K. & CHEN, Q.L. (2008). “Effect of TiO2 on the structure and catalytic behavior of iron–potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene”. En Catalysis Communications. 9, 1817–1821. MATSUI, J., SODESAWA, T. y NURAKI, F. (1990). “Influence of carbon dioxide addition upon decay of activity of a potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene”. En Applied Catalysis A: General. 67, 179. Meima, G.R. & MENON, P.G. (2001). “Catalyst deactivation phenomena in styrene production”. En Applied Catalysis A: General. 212, 239–245. MIMURA, N. & SAITO, M. (2000). “Dehydrogenation of ethylbenzene to styrene over Fe2 O3/Al2O3 catalysts in the presence of carbon dioxide”. En Catalysis Today. 55. 173–178. Mimura, N. y Saito, M. (1999). “Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide”. En Catalysis Today. 55, 173-178. MIMURA, N., TAKANARA, L., SAITO, M., HATTORI, T., OHKUMA, M. y ANDO, M. (1998). “Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide”. En Catalysis Today. 45, 61. MIMURA, N., TAKANARA, L., SAITO, M., HATTORI, T., OHKUMA, M. y ANDO, M. (1998). “Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide”. En Studies Surfaces Catalysis.114, 415. MIYAKOSHI, A., UENO, A. y ICHIKAWA, M. (2001). “Mn-substituted Fe–K mixed oxide catalysts for dehydrogenation of ethylbenzene towards styrene”. En Applied Catalysis A: General. 216, 137–146. MIYAKOSHI, A., UENO, A. y ICHIKAWA, M. (2001). “XPS and TPD characterization of manganesesubstituted iron–potassium oxide catalysts which are selective for dehydrogenation of ethylbenzene into styrene”. En Applied Catalysis A: General. 219, 249–258. MONTI, D.A.M. & BAIKER, A. (1983). “Temperature-Programmed Reduction. Parametric Sensitivity and Estimation of Kinetic Parameters”. En Journal of Catalysis. 83 323-335. MORONTA, A., TROCONIS, M.E., GONZÁLEZ, E., MORÁN, C., SÁNCHEZ, J., GONZÁLEZ, A. & QUIÑÓNEZ, J. (2006). Dehydrogenation of ethylbenzene to styrene catalyzed by Co, Mo and CoMo catalysts supported on natural and aluminum-pillared clays. Effect of the metal reduction. Applied Catalysis A: General.310, 199–204. NEDERLOF, C., KAPTEIJN, F. & MAKKEE, M. (2012). “Catalysed ethylbenzene dehydrogenation in CO2 or N2 Carbon deposits as theactive phase”. En Applied Catalysis A: General. 417– 418, 163– 173. NEDERLOF, C., TALAY, G., KAPTEIJN, F.& MAKKEE, M. (2012). “The role of RWGS in the dehydrogenation of ethylbenzene to styrene in CO2”. En Applied Catalysis A: General.423– 424, 59– 68. NIETO, S. (2001). Síntesis y caracterización de molibdatos y heteropolimolibdatos de cobre como posible utilización en catálisis. Tesis para obtención del grado de Químico. Universidad de Cartagena-I.V.I.C. Cartagena. NOGUEIRA, I.M., SABADIA, G. Q., MOREIRA, A.A., FILHO, J.M. & OLIVEIRA, A.C. (2011). “Investigation of the deactivation of iron nanocomposites by coking in dehydrogenation of ethylbenzene”. En Journal of Molecular Catalysis A: Chemical. 351, 81– 92. OHISHI, Y., KAWABATA, T., SHISHIDO, T., TAKAKI, K., ZHANG, Q., WANG, Y., NOMURA, K. & Takehira, K. (2005). “Mg–Fe–Al mixed oxides with mesoporous properties prepared from hydrotalcite as precursors: Catalytic behavior in ethylbenzene dehydrogenation”. En Applied Catalysis A: General. 288, 220–231. PARK, M.S., VISLOVSKIY, V.P., CHANG, J.S., SHUL, Y.G., YOO, J.S. & PARK, S.E.(2003). “Catalytic dehydrogenation of ethylbenzene with carbon dioxide: promotional effect of antimony in supported vanadium–antimony oxide catalyst”. En Catalysis Today. 87, 205–212. PENG Feng, FU Xiao-bo, YU Hao, WANG Hong-Juan.(2007). Preparation of carbon nanotube-supported Fe2 O3 catalysts and their catalytic activities for ethylbenzene dehydrogenation. New Carbon Materials. 22 (3), 213–217. PINHEIRO Braga, T., LONGHINOTTI, E., PINHEIRO, A.N. & VALENTINI, A. (2009). “Synthesis of hybrid spheres for the dehydrogenation of ethylbenzene in the presence of CO2”. En Applied Catalysis A: General. 362, 139–146. PONOMOREVA, O.A, YUSCHENKO, V.V., LVANOVA, I.I., PASQUA, L., TESTA, F., Di RENZO, F. & FAJULA, F. (2004). “Dehydrogenation of Ethylbenzene Over Ga-And Fe-Containing MCM-41”. En Studies in Surface Science and Catalysis. 154, 2208-2211. ROSSETTI, I., BENCINI, E., TRENTINI, L., FORNI, L. (2005). “Study of the deactivation of a commercial catalyst for ethylbenzene dehydrogenation to styrene”. En Applied Catalysis A: General. 292, 118–123. SAITO, K., OKUDA, K., IKENAGA, N.O., MIYAKE, T. & SUZUKI, T. (2010). “Role of Lattice Oxygen of Metal Oxides in the Dehydrogenation of Ethylbenzene under a Carbon Dioxide Atmosphere”. En J. Phys. Chem. A. 114, 3845–3854. Saito, M., KIMURA, H., MIMURA, N., Wu, J. y MURATA, K. (2003). “Dehydrogenation of ethylbenzene in the presence of CO2 over an alumina-supported iron oxide catalyst”. En Applied Catalysis A: General. 239, 71-77. SAITO, M., KIMURA, H., MIMURA, N., WU, J. y MURATA, K. (2003). “Dehydrogenation of ethylbenzene in the presence of CO2 over an alumina-supported iron oxide catalyst”. En Applied Catalysis A: General. 239, 71-77. SAKURAI, Y., SUZAKI, T., NAKAGAWA, K., IKENAGA, N., AOTA, H. y Suzuki, T. (2002). Journal of Catalysis. 209(1),16-24. SANTOS M.D.S., ALBORNOZ, A. & DO CARMO Rangel, M. (2006). “The influence of the preparation method on the catalytic properties of Lanthanum-doped hematite in the ethylbenzene dehydrogenation”. En Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier B.V, 753-760. SANTOS, M.D.S., MARCHETTI, S.G., ALBORNOZ, A. & DO CARMO Rangel, M. (2008). “Effect of lanthanum addition on the properties of potassium-free catalysts for ethylbenzene dehydrogenation”. En Catalysis Today. 133–135 160–167. SECRETARÍA GENERAL DE LA ORGANIZACIÓN DE LOS ESTADOS AMERICANOS (1980). La espectroscopía infrarroja. Washington, D.C. SHEKHAH, O., RANKE, W. & SCHLÖGL, R. (2004). “Styrene synthesis: in situ characterization and reactivity studies of unpromoted and potassium-promoted iron oxide model catalysts”. En Journal of Catalysis. 225, 56–68. STYLES, A. B. (1983). Applied Industrial Catalysis. New York: Academic Press. SUGINO, M., SHIMADA, H., TURUDA, T., MIURA, H., IKENAGA, N. & SUZUKI, T. (1995). “Oxidative dehydrogenation of ethylbenzene with carbon dioxide”. En Applied Catalysis A: General.121, 125-137. SUN, A., QIN, Z., Chen, S. & WANG, J. (2004). “Ethylbenzene dehydrogenation in the presence of carbon dioxide over alumina supported catalysts”. En Catalysis Today. 93–95, 273–279. SUN, A., QIN, Z., CHEN, S. & WANG, J. (2004). “Role of carbon dioxide in the ethylbenzene dehydrogenation coupled with reverse water–gas shift”. En Journal of Molecular Catalysis A: Chemical. 210, 189–195. VISLOVSKIY, V.P., CHANG, J.S., PARK, M.S. & PARK, S.E. (2002). “Ethylbenzene into styrene with carbon dioxide over modified vanadia–alumina catalysts”. En Catalysis Communications. 3, 227–231. XIANG Bin, XU HENGYONG & LI Wenzhou. (2007). “Highly efficient nano-sized Fe2 O3–K2 O catalyst for dehydrogenation of ethylbenzene to styrene”. En Chinese Journal of Catalysis. 28(10). 841–843. XU, J., HUANG, J., LIU, Y., Cao, Y.,Li, Y. y FAN, K. (2011). Catal. Lett. 141, 198–206. XU, J., XUE, B., LIU, Y., LI, Y., CAO Y. y FAN, K. (2011). “Mesostructured Ni-doped ceria as an efficient catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene”. En Applied Catalysis A: General. 405, 142–148. YE, X., MA, N., HUA, W., YUE, Y., MIAO, C., XIE, Z. & GAO, Z. (2004). “Dehydrogenation of ethylbenzene in the presence of CO2 over catalysts prepared from hydrotalcite-like precursors”. En Journal of Molecular Catalysis A: Chemical. 217, 103–108. ZHAO, T.J., SUN, Y.J., GU, X.Y., LI, P., CHEN, D., DAI, D.Y., YUAN, W.K. & Holmen, A. (2006). “Dehydrogenation of ethylbenzene with carbon nanofiber supported iron oxide carbon dioxide over”. En Studies in Surface Science and Catalysis, 159, 741-744. ZHU, X.M., SCHÖN, M., BARTMANN, U., VAN VEEN, A.C. y MUHLER, M. (2004). “The dehydrogenation of ethylbenzene to styrene over a potassium-promoted iron oxide-based catalyst: a transient kinetic study”. En Applied Catalysis A: General. 266, 99–108. ZHYZNEVSKIY, V.M., TSYBUKH, R.D., GUMENETSKIY V.V. y KOCHUBEIY V.V. (2003). “Physicochemical and catalytic properties of Fe2 BiMo2 Ox catalyst ultrasound treated and promoted with Al2O3 in the oxidative dehydrogenation of ethylbenzene to styrene”. En Applied Catalysis A: General. 238, 19–28
Universidad de San Buenaventura-Cali
Cali, Hemeroteca 3er. piso
Biblioteca Digital Universidad de San Buenaventura
Repositorio USB
Universidad de San Buenaventura
instacron:Universidad de San Buenaventura
Revista Guillermo de Ockham, Vol 11, Iss 1 (2013)
This work pretends to show the present state inthe subject of the catalytic dehydrogenation reaction of ethylbenzene to produce styrene. It focuses on the catalyst proposals that have been presented in the last twenty years. It describes general aspe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::042b219b27398822ee1fcc802b6211fa