Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Etienne Tanré"'
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP688⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP688⟩
Electronic Journal of Probability, 2021, 26, ⟨10.1214/21-EJP688⟩
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2021, 26, ⟨10.1214/21-EJP688⟩
International audience; We study a family of non-linear McKean-Vlasov SDEs driven by a Poisson measure, modelling the mean-field asymptotic of a network of generalized Integrate-and-Fire neurons.We give sufficient conditions to have periodic solution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff88bacaee7aa779a6318247cb9f023f
http://arxiv.org/abs/2008.11116
http://arxiv.org/abs/2008.11116
Publikováno v:
Stochastic Processes and their Applications
Stochastic Processes and their Applications, Elsevier, 2020, 130 (5), pp.2553-2593. ⟨10.1016/j.spa.2019.07.010⟩
Stochastic Processes and their Applications, 2020, 130 (5), pp.2553-2593. ⟨10.1016/j.spa.2019.07.010⟩
Stochastic Processes and their Applications, Elsevier, 2020, 130 (5), pp.2553-2593. ⟨10.1016/j.spa.2019.07.010⟩
Stochastic Processes and their Applications, 2020, 130 (5), pp.2553-2593. ⟨10.1016/j.spa.2019.07.010⟩
International audience; We study the long time behavior of the solution to some McKean-Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b94621d0ab08eb7c4ff90c26451d71b
https://hal.inria.fr/hal-01903857v2/document
https://hal.inria.fr/hal-01903857v2/document
Publikováno v:
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (2), pp.1041-1071. ⟨10.1214/19-AIHP993⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (2), pp.1041-1071. ⟨10.1214/19-AIHP993⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 2 (2020), 1041-1071
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2020, 56 (2), pp.1041-1071
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2020, 56 (2), pp.1041-1071. ⟨10.1214/19-AIHP993⟩
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2020, 56 (2), pp.1041-1071. ⟨10.1214/19-AIHP993⟩
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 2 (2020), 1041-1071
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institute Henri Poincaré, 2020, 56 (2), pp.1041-1071
Consider a large number $n$ of neurons, each being connected to approximately $N$ other ones, chosen at random. When a neuron spikes, which occurs randomly at some rate depending on its electric potential, its potential is set to a minimum value $v_{
Publikováno v:
Bernoulli
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2020, 26 (4), pp.2949--2986. ⟨10.3150/20-BEJ1212⟩
Bernoulli, 2020, 26 (4), pp.2949--2986. ⟨10.3150/20-BEJ1212⟩
Bernoulli 26, no. 4 (2020), 2949-2986
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, In press
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2020, 26 (4), pp.2949--2986. ⟨10.3150/20-BEJ1212⟩
Bernoulli, 2020, 26 (4), pp.2949--2986. ⟨10.3150/20-BEJ1212⟩
Bernoulli 26, no. 4 (2020), 2949-2986
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, In press
International audience; In this paper we solve real-valued rough differential equations (RDEs) reflected on an irregular boundary. The solution $Y$ is constructed as the limit of a sequence $(Y^n)_{n\in\mathbb{N}}$ of solutions to RDEs with unbounded
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71bf75228c7c43eb53b83e62461cf706
http://arxiv.org/abs/1904.11447
http://arxiv.org/abs/1904.11447
Autor:
Etienne Tanré, Cyrille Mascart, Julien Chevallier, François Delarue, Paolo Grazieschi, Marta Leocata
Publikováno v:
ESAIM: Proceedings and Surveys
ESAIM: Proceedings and Surveys, EDP Sciences, 2019, CEMRACS 2017-Numerical methods for stochastic models: control, uncertainty quantification, mean-field, 65, pp.445-475. ⟨10.1051/proc/201965445⟩
ESAIM: Proceedings and Surveys, Vol 65, Pp 445-475 (2019)
ESAIM: Proceedings and Surveys, 2019, CEMRACS 2017-Numerical methods for stochastic models: control, uncertainty quantification, mean-field, 65, pp.445-475. ⟨10.1051/proc/201965445⟩
ESAIM: Proceedings and Surveys, EDP Sciences, 2019, CEMRACS 2017-Numerical methods for stochastic models: control, uncertainty quantification, mean-field, 65, pp.445-475. ⟨10.1051/proc/201965445⟩
ESAIM: Proceedings and Surveys, Vol 65, Pp 445-475 (2019)
ESAIM: Proceedings and Surveys, 2019, CEMRACS 2017-Numerical methods for stochastic models: control, uncertainty quantification, mean-field, 65, pp.445-475. ⟨10.1051/proc/201965445⟩
Since the pioneering works of Lapicque [17] and of Hodgkin and Huxley [16], several types of models have been addressed to describe the evolution in time of the potential of the membrane of a neuron. In this note, we investigate a connected version o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35bf2136e8317640f8bbb70dea226783
https://hal.inria.fr/hal-01928990
https://hal.inria.fr/hal-01928990
Publikováno v:
Journal of Computational Neuroscience
Journal of Computational Neuroscience, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
Journal of Computational Neuroscience, Springer Verlag, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
Journal of Computational Neuroscience, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
Journal of Computational Neuroscience, Springer Verlag, 2018, 44 (3), pp.297-312. ⟨10.1007/s10827-018-0680-1⟩
International audience; Long-range dependence (LRD) has been observed in a variety of phenomena in nature, and for several years also in the spiking activity of neurons. Often, this is interpreted as originating from a non-Markovian system. Here we s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ce43cdb4a6e38c855bb98431508e6ee
https://hal.inria.fr/hal-01521891v2/document
https://hal.inria.fr/hal-01521891v2/document
Autor:
Etienne Tanré, Pierre Guiraud
Publikováno v:
Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, 2019, 24 (9), pp.5183--5201. ⟨10.3934/dcdsb.2019056⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2019, 24 (9), pp.5183--5201. ⟨10.3934/dcdsb.2019056⟩
Discrete and Continuous Dynamical Systems-Series B, 2019, 24 (9), pp.5183--5201. ⟨10.3934/dcdsb.2019056⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2019, 24 (9), pp.5183--5201. ⟨10.3934/dcdsb.2019056⟩
International audience; In the present paper, we study the synchronization in a model of neural network which can be considered as a noisy version of the model of \citet{mirollo1990synchronization}, namely, fully-connected and totally excitatory inte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94ebdd3cff9960610b294d0fac6a42e0
http://arxiv.org/abs/1609.07103
http://arxiv.org/abs/1609.07103
Autor:
Samuel Herrmann, Etienne Tanré
Publikováno v:
SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (1), pp.A196-A215. ⟨10.1137/151006172⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (1), pp.A196-A215. 〈10.1137/151006172〉
SIAM Journal on Scientific Computing, 2016, 38 (1), pp.A196-A215. ⟨10.1137/151006172⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (1), pp.A196-A215. ⟨10.1137/151006172⟩
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2016, 38 (1), pp.A196-A215. 〈10.1137/151006172〉
SIAM Journal on Scientific Computing, 2016, 38 (1), pp.A196-A215. ⟨10.1137/151006172⟩
International audience; Under some weak conditions, the first-passage time of the Brownian motion to a continuous curved boundary is an almost surely finite stopping time. Its probability density function (pdf) is explicitly known only in few particu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::715d670f85271a27b47f40a7111c9915
https://hal.inria.fr/hal-01110387
https://hal.inria.fr/hal-01110387
Publikováno v:
Applied Mathematical Finance
Applied Mathematical Finance, 2016, ⟨10.1080/1350486X.2016.1164608⟩
Applied Mathematical Finance, Taylor & Francis (Routledge): SSH Titles, 2016, ⟨10.1080/1350486X.2016.1164608⟩
Applied Mathematical Finance, 2016, ⟨10.1080/1350486X.2016.1164608⟩
Applied Mathematical Finance, Taylor & Francis (Routledge): SSH Titles, 2016, ⟨10.1080/1350486X.2016.1164608⟩
International audience; We consider rate swaps which pay a fixed rate against a floating rate in presence of bid-ask spread costs. Even for simple models of bid-ask spread costs, there is no explicit optimal strategy minimizing a risk measure of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84891e18121db6f71440b3949d62c490
http://arxiv.org/abs/1501.07404
http://arxiv.org/abs/1501.07404
Publikováno v:
Annals of Applied Probability
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2015, 25 (4), pp.2096--2133. ⟨10.1214/14-AAP1044⟩
Annals of Applied Probability, 2015, 25 (4), pp.2096--2133. ⟨10.1214/14-AAP1044⟩
Ann. Appl. Probab. 25, no. 4 (2015), 2096-2133
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2015, 25 (4), pp.2096--2133. ⟨10.1214/14-AAP1044⟩
Annals of Applied Probability, 2015, 25 (4), pp.2096--2133. ⟨10.1214/14-AAP1044⟩
Ann. Appl. Probab. 25, no. 4 (2015), 2096-2133
We here investigate the well-posedness of a networked integrate-and-fire model describing an infinite population of neurons which interact with one another through their common statistical distribution. The interaction is of the self-excitatory type
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80e6e12848ad993d6b8627787ce77eb9
https://hal.inria.fr/hal-00747565
https://hal.inria.fr/hal-00747565