Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Eszter K. Horváth"'
Autor:
Eszter K. Horváth, Andreja Tepavčević
Publikováno v:
Miskolc Mathematical Notes, Vol 25, Iss 2, p 749 (2024)
We determine the two greatest numbers of weak congruences of lattices. The number of weak congruences of some special lattices are deduced via combinatorial considerations.
Externí odkaz:
https://doaj.org/article/2a43dca7ba544f4a9b762068d0e64bb8
Publikováno v:
Order.
Publikováno v:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry. 62:495-512
Invariance groups of sets of Boolean functions can be characterized as Galois closures of a suitable Galois connection. We consider such groups in a much more general context using group actions of an abstract group and arbitrary functions instead of
Publikováno v:
Fuzzy Sets and Systems. 397:28-40
We analyze cuts of poset-valued functions relating them to residuated mappings. Dealing with the lattice-valued case we prove that a function μ : X → L induces a residuated map f : L → P ( X ) whose values are the cuts of μ and we describe the
Autor:
Eszter K. Horváth, Delbrin Ahmed
Publikováno v:
Discussiones Mathematicae-General Algebra and Applications, Vol 39, Iss 2, Pp 251-261 (2019)
By a subuniverse, we mean a sublattice or the emptyset. We prove that the fourth largest number of subuniverses of an n-element lattice is 43 2n−6 for n ≥ 6, and the fifth largest number of subuniverses of an n-element lattice is 85 2n−7 for n
Autor:
Delbrin Ahmed, Eszter K. Horváth
Publikováno v:
Miskolc Mathematical Notes. 22:521
Publikováno v:
Soft Computing. 21:853-859
This paper deals with lattice-valued n-variable functions on a k-element domain, considered as a generalization of lattice-valued Boolean functions. We investigate invariance groups of these functions, i.e., the group of such permutations that leaves
For a positive integer $n$, an $n$-sided polygon lying on a circular arc or, shortly, an $n$-fan is a sequence of $n+1$ points on a circle going counterclockwise such that the "total rotation" $\delta$ from the first point to the last one is at most
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4665abffc27ddeef7d3c122992169978
http://publicatio.bibl.u-szeged.hu/14539/
http://publicatio.bibl.u-szeged.hu/14539/
Publikováno v:
Acta Scientriarum Mathematicarum. 81:375-380
Autor:
Eszter K. Horváth, Gábor Czédli
Publikováno v:
Miskolc Mathematical Notes. 20:839
For every natural number $n\geq 5$, we prove that the number of subuniverses of an $n$-element lattice is $2^n$, $13\cdot 2^{n-4}$, $23\cdot 2^{n-5}$, or less than $23\cdot 2^{n-5}$. By a subuniverse, we mean a sublattice or the emptyset. Also, we de