Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Estrella Eisenberg"'
Publikováno v:
Enumerative Combinatorics and Applications, Vol 2, Iss 4, p Article #S4PP5 (2022)
Externí odkaz:
https://doaj.org/article/4daf63eb1f6446088a46e79c13159033
Publikováno v:
Enumerative Combinatorics and Applications, Vol 1, Iss 3, p Article S2R21 (2021)
Externí odkaz:
https://doaj.org/article/63630e943de74ab5bd5629f5ed51efa2
Publikováno v:
Enumerative Combinatorics and Applications, Vol 2, Iss 4, p Article #S4PP5 (2022)
We call a permutation $\sigma=[\sigma_1,\dots,\sigma_n] \in S_n$ a {\em cylindrical king permutation} if $ |\sigma_i-\sigma_{i+1}|>1$ for each $1\leq i \leq n-1$ and $|\sigma_1-\sigma_n|>1$. We present some results regarding the distribution of the c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d7ac2cad6e8071db9b69a874fbedade
Publikováno v:
Enumerative Combinatorics and Applications, Vol 1, Iss 3, p Article S2R21 (2021)
Publikováno v:
European Journal of Combinatorics. 87:103119
A king-non-attacking permutation is a permutation π ∈ S n such that | π i − π i − 1 | ≠ 1 for each i ∈ { 2 , … , n } . We investigate the structure of the poset of these permutations under the containment relation, and also provide som
Publikováno v:
Information and Computation. 241:215-226
Finding an approximate period in a given string S of length n is defined as follows. Let S ' be a periodic string closest to S under some distance metric, find the smallest period of S ' . This period is called an approximate period of S under the gi
Publikováno v:
Theoretical Computer Science. 533:26-36
The problem of finding the period of a vector V is central to many applications. Let V′ be a periodic vector closest to V under some metric. We seek this V′, or more precisely we seek the smallest period that generates V′. In this paper we cons
Autor:
Amihood Amir, Avivit Levy, Gad M. Landau, Estrella Eisenberg, Alberto Apostolico, Noa Lewenstein
Publikováno v:
Theoretical computer science (Berl. West) 525 (2014): 60–67.
info:cnr-pdr/source/autori:Amihood Amir, Alberto Apostolico, Estrella Eisenberg, Gad M. Landau, Avivit Levy, Noa Lewenstein/titolo:Detecting approximate periodic patterns/doi:/rivista:Theoretical computer science (Berl. West)/anno:2014/pagina_da:60/pagina_a:67/intervallo_pagine:60–67/volume:525
info:cnr-pdr/source/autori:Amihood Amir, Alberto Apostolico, Estrella Eisenberg, Gad M. Landau, Avivit Levy, Noa Lewenstein/titolo:Detecting approximate periodic patterns/doi:/rivista:Theoretical computer science (Berl. West)/anno:2014/pagina_da:60/pagina_a:67/intervallo_pagine:60–67/volume:525
Given @e@?[0,1), the @e-Relative Error Periodic Pattern Problem (REPP) is the following: INPUT: An n-long sequence S of numbers s"i@?N in increasing order. OUTPUT: The longest @e-relative error periodic pattern, i.e., the longest subsequence s"i"""1,
Gessel conjectured that the two-sided Eulerian polynomial, recording the common distribution of the descent number of a permutation and that of its inverse, has non-negative integer coefficients when expanded in terms of the gamma basis. This conject
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36ed4ba4339e860da497151085690122
Publikováno v:
ACM Transactions on Algorithms. 9:1-20
Assume that a natural cyclic phenomenon has been measured, but the data is corrupted by errors. The type of corruption is application-dependent and may be caused by measurements errors, or natural features of the phenomenon. We assume that an appropr