Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Esther Cabezas-Rivas"'
Publikováno v:
Fractal and Fractional, Vol 7, Iss 12, p 870 (2023)
The aim of this paper is to analyse Bitcoin in order to shed some light on its nature and behaviour. We select 9 cryptocurrencies that account for almost 75% of total market capitalisation and compare their evolution with that of a wide variety of tr
Externí odkaz:
https://doaj.org/article/8773257294084412be78224efad6687d
Autor:
Esther Cabezas-Rivas
Publikováno v:
EDULEARN Proceedings.
Autor:
Robert Haslhofer, Esther Cabezas-Rivas
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2020:217-239
We study Brownian motion and stochastic parallel transport on Perelman’s almost Ricci flat manifold ℳ = M × 𝕊 N × I {\mathcal{M}=M\times\mathbb{S}^{N}\times I} , whose dimension depends on a parameter N unbounded from above. We construct seq
Autor:
Esther Cabezas-Rivas
Publikováno v:
ICERI Proceedings.
Autor:
Esther Cabezas-Rivas, Vicente Miquel
Publikováno v:
Differential Geometry and its Applications. 49:287-300
We provide explicit examples which show that mean convexity (i.e. positivity of the mean curvature) and positivity of the scalar curvature are non-preserved curvature conditions for hypersurfaces of the Euclidean space evolving under either the volum
Autor:
Burkhard Wilking, Esther Cabezas-Rivas
Publikováno v:
Journal of the European Mathematical Society. 17:3153-3194
We prove short time existence for the Ricci flow on open manifolds of nonnegative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger- Gromoll convex exhaustion and s
Autor:
Vicente Miquel, Esther Cabezas-Rivas
Publikováno v:
Mathematische Zeitschrift. 261:489-510
In an ambient space with rotational symmetry around an axis (which include the Hyperbolic and Euclidean spaces), we study the evolution under the volume-preserving mean curvature flow of a revolution hypersurface M generated by a graph over the axis
Autor:
Esther Cabezas-Rivas, Carlo Sinestrari
We consider the evolution of a closed convex hypersurface under a volume preserving curvature flow. The speed is given by a power of the m-th mean curvature plus a volume preserving term, including the case of powers of the mean curvature or of the G
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a70d2faa24b8a2bdf9a0494224ab44a6
http://arxiv.org/abs/0902.2090
http://arxiv.org/abs/0902.2090
Autor:
Peter M. Topping, Esther Cabezas-Rivas
We introduce the notion of Canonical Expanding Ricci Soliton, and use it to derive new Harnack inequalities for Ricci flow. This viewpoint also gives geometric insight into the existing Harnack inequalities of Hamilton and Brendle.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9342413766c1fa267e1072d89097e20f
We prove: "If $M$ is a compact hypersurface of the hyperbolic space, convex by horospheres and evolving by the volume preserving mean curvature flow, then it flows for all time, convexity by horospheres is preserved and the flow converges, exponentia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4311be10e48e49cf1ff888f133af6fd
http://arxiv.org/abs/math/0611216
http://arxiv.org/abs/math/0611216