Zobrazeno 1 - 10
of 1 209
pro vyhledávání: '"Esposito Francesco"'
Autor:
Esposito Francesco, Sciunzi Berardino
Publikováno v:
Advanced Nonlinear Studies, Vol 21, Iss 4, Pp 905-916 (2021)
In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov–Serrin and a careful c
Externí odkaz:
https://doaj.org/article/7d24ea5c399942b989299201de5b8bc6
In this paper we consider a quasilinear elliptic and critical problem with Dirichlet boundary conditions in presence of the anisotropic $p$-Laplacian. The critical exponent is the usual $p^{\star}$ such that the embedding $W^{1,p}_{0}(\Omega) \subset
Externí odkaz:
http://arxiv.org/abs/2411.16257
In this paper we study the effect of the Hardy potential on existence, uniqueness and optimal summability of solutions of the mixed local-nonlocal elliptic problem $$-\Delta u + (-\Delta)^s u - \gamma \frac{u}{|x|^2}=f \text{ in } \Omega, \ u=0 \text
Externí odkaz:
http://arxiv.org/abs/2407.06763
We provide a characterization of parallelizable compact complex manifolds and their quotients using holomorphic symmetric differentials. In particular we show that compact complex manifolds of Kodaira dimension 0 having strongly semiample cotangent b
Externí odkaz:
http://arxiv.org/abs/2406.04139
We introduce the concepts of an amazing hypercube decomposition and a double shortcut for it, and use these new ideas to formulate a conjecture implying the Combinatorial Invariance Conjecture of the Kazhdan--Lusztig polynomials for the symmetric gro
Externí odkaz:
http://arxiv.org/abs/2404.12834
Autor:
Esposito, Francesco, Marietti, Mario
In this work, we investigate a novel approach to the Combinatorial Invariance Conjecture of Kazhdan--Lusztig polynomials for the symmetric group. Using the new concept of flipclasses, we introduce some combinatorial invariants of intervals in the sym
Externí odkaz:
http://arxiv.org/abs/2402.13097
The aim of this paper is to deal with the anisotropic doubly critical equation $$-\Delta_p^H u - \frac{\gamma}{[H^\circ(x)]^p} u^{p-1} = u^{p^*-1} \qquad \text{in } \R^N,$$ where $H$ is in some cases called Finsler norm, $H^\circ$ is the dual norm, $
Externí odkaz:
http://arxiv.org/abs/2309.16361
We obtain some rigidity results for overdetermined boundary value problems for singular solutions in bounded domains.
Comment: 9 pages. Accepted for publication on the Bulletin of the London Mathematical Society
Comment: 9 pages. Accepted for publication on the Bulletin of the London Mathematical Society
Externí odkaz:
http://arxiv.org/abs/2308.03371
This work deals with a family of Hardy-Sobolev doubly critical system defined in $\mathbb{R}^n$. More precisely, we provide a classification of the positive solutions, whose expressions comprise multiplies of solutions of the decoupled scalar equatio
Externí odkaz:
http://arxiv.org/abs/2304.11066
Autor:
Esposito, Francesco, Penkov, Ivan
We construct universal monoidal categories of topological tensor supermodules over the Lie superalgebras $\mathfrak{gl}(V\oplus \Pi V)$ and $\mathfrak{osp}(V\oplus \Pi V)$ associated with a Tate space $V$. Here $V\oplus \Pi V$ is a $\mathbb{Z}/2\math
Externí odkaz:
http://arxiv.org/abs/2301.08921