Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Esmeralda Mainar"'
Publikováno v:
Axioms, Vol 13, Iss 9, p 589 (2024)
The elements of the bidiagonal decomposition (BD) of a totally positive (TP) collocation matrix can be expressed in terms of symmetric functions of the nodes. Making use of this result, and studying the relation between Wronskian and collocation matr
Externí odkaz:
https://doaj.org/article/f4ac9588ed074b5d84e26f6add13f111
Publikováno v:
Axioms, Vol 13, Iss 4, p 219 (2024)
Extensions of Filbert and Lilbert matrices are addressed in this work. They are reciprocal Hankel matrices based on Fibonacci and Lucas numbers, respectively, and both are related to Hilbert matrices. The Neville elimination is applied to provide exp
Externí odkaz:
https://doaj.org/article/2364fdec2cb24d23893157898d121ae8
Publikováno v:
Symmetry, Vol 15, Iss 11, p 2041 (2023)
This paper proposes a new approach to define two frequency trigonometric spline curves with interesting shape preserving properties. This construction requires the normalized B-basis of the space U4(Iα)=span{1,cost,sint,cos2t,sin2t} defined on compa
Externí odkaz:
https://doaj.org/article/55cc92e0961a47b6884f654bda2ec8d9
Publikováno v:
Axioms, Vol 12, Iss 9, p 839 (2023)
A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-Stirling matrices are totally positive and determine the linear transformation between monomial and r-Bell polynomial bases. An efficient algorithm for the computat
Externí odkaz:
https://doaj.org/article/514cd673cb9d4365a065c0822d6479ab
Publikováno v:
Symmetry, Vol 15, Iss 8, p 1551 (2023)
We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the
Externí odkaz:
https://doaj.org/article/3ee90163f890411cae9b3053616fc496
Autor:
Lucía Díaz Pérez, Beatriz Rubio Serrano, José A. Albajez García, José A. Yagüe Fabra, Esmeralda Mainar Maza, Marta Torralba Gracia
Publikováno v:
Micromachines, Vol 10, Iss 9, p 597 (2019)
Nanotechnology applications demand high accuracy positioning systems. Therefore, in order to achieve sub-micrometer accuracy, positioning uncertainty contributions must be minimized by implementing precision positioning control strategies. The positi
Externí odkaz:
https://doaj.org/article/5b65bdafa50f43bfb204d6fd71a6c0c7
Publikováno v:
Advances in Computational Mathematics. 48
The total positivity of collocation, Wronskian and Gram matrices corresponding to bases of the form (eλt,teλt,…,tneλt) is analyzed. A bidiagonal decomposition providing the accurate numerical resolution of algebraic linear problems with these ma
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 116
In this paper we deduce a bidiagonal decomposition of Gram and Wronskian matrices of geometric and Poisson bases. It is also proved that the Gram matrices of both bases are strictly totally positive, that is, all their minors are positive. The mentio
Autor:
Pablo Díaz Benito, Beatriz Rubio Serrano, Esmeralda Mainar Maza, Iván Bailera Martín, Jorge Alberto Jover Galtier, María Ángeles Martínez Carballo, María Begoña Melendo Pardos, María Inmaculada Gómez Ibáñez, Natalia Boal Sánchez, Ricardo Celorrio de Pablo, Sergio Serrano Pastor
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
La consecución global de los Objetivos de Desarrollo Sostenible (ODS) y la Agenda 2030 es un propósito que solo se alcanzará en la medida en que todos los agentes sociales se involucren. Es evidente que la Universidad debe ser uno de los instrumen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9c29db5eb44f7bc83f3d5baad2c22a1
https://doi.org/10.26754/uz.problemas_ods_2022
https://doi.org/10.26754/uz.problemas_ods_2022
Publikováno v:
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
instname
This paper provides an accurate method to obtain the bidiagonal factorization of Wronskian matrices of Bessel polynomials and of Laguerre polynomials. This method can be used to compute with high relative accuracy their singular values, the inverse o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8ab3b3f42bdc3af917697d51d61e886
http://zaguan.unizar.es/record/118071
http://zaguan.unizar.es/record/118071