Zobrazeno 1 - 10
of 14 803
pro vyhledávání: '"Escudero, P"'
In this work we consider the problems of learning junta distributions, their quantum counter-part, quantum junta states, and QAC$^0$ circuits, which we show to be juntas. $\mathbf{Junta\ distributions.\ }$A probability distribution $p:\{-1,1\}^n\to \
Externí odkaz:
http://arxiv.org/abs/2410.15822
Autor:
Project, CTA-LST, Abe, K., Abe, S., Abhishek, A., Acero, F., Aguasca-Cabot, A., Agudo, I., Alispach, C., Crespo, N. Alvarez, Ambrosino, D., Antonelli, L. A., Aramo, C., Arbet-Engels, A., Arcaro, C., Asano, K., Aubert, P., Baktash, A., Balbo, M., Bamba, A., Larriva, A. Baquero, de Almeida, U. Barres, Barrio, J. A., Jiménez, L. Barrios, Batkovic, I., Baxter, J., González, J. Becerra, Bernardini, E., Medrano, J. Bernete, Berti, A., Bezshyiko, I., Bhattacharjee, P., Bigongiari, C., Bissaldi, E., Blanch, O., Bonnoli, G., Bordas, P., Borkowski, G., Brunelli, G., Bulgarelli, A., Burelli, I., Burmistrov, L., Buscemi, M., Cardillo, M., Caroff, S., Carosi, A., Carrasco, M. S., Cassol, F., Castrejón, N., Cauz, D., Cerasole, D., Ceribella, G., Chai, Y., Cheng, K., Chiavassa, A., Chikawa, M., Chon, G., Chytka, L., Cicciari, G. M., Cifuentes, A., Contreras, J. L., Cortina, J., Costantini, H., Da Vela, P., Dalchenko, M., Dazzi, F., De Angelis, A., de Lavergne, M. de Bony, De Lotto, B., de Menezes, R., Del Burgo, R., Del Peral, L., Delgado, C., Mengual, J. Delgado, della Volpe, D., Dellaiera, M., Di Piano, A., Di Pierro, F., Di Tria, R., Di Venere, L., Díaz, C., Dominik, R. M., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Eisenberger, L., Elsässer, D., Emery, G., Escudero, J., Ramazani, V. Fallah, Ferrarotto, F., Fiasson, A., Foffano, L., Coromina, L. Freixas, Fröse, S., Fukazawa, Y., López, R. Garcia, Gasbarra, C., Gasparrini, D., Geyer, D., Paiva, J. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinovic, N., Grau, R., Green, D., Green, J., Gunji, S., Günther, P., Hackfeld, J., Hadasch, D., Hahn, A., Hassan, T., Hayashi, K., Heckmann, L., Heller, M., Llorente, J. Herrera, Hirotani, K., Hoffmann, D., Horns, D., Houles, J., Hrabovsky, M., Hrupec, D., Hui, D., Iarlori, M., Imazawa, R., Inada, T., Inome, Y., Inoue, S., Ioka, K., Iori, M., Iuliano, A., Martinez, I. Jimenez, Quiles, J. Jimenez, Jurysek, J., Kagaya, M., Kalashev, O., Karas, V., Katagiri, H., Kataoka, J., Kerszberg, D., Kobayashi, Y., Kohri, K., Kong, A., Kubo, H., Kushida, J., Lainez, M., Lamanna, G., Lamastra, A., Lemoigne, L., Linhoff, M., Longo, F., López-Coto, R., López-Oramas, A., Loporchio, S., Lorini, A., Bahilo, J. Lozano, Luciani, H., Luque-Escamilla, P. L., Majumdar, P., Makariev, M., Mallamaci, M., Mandat, D., Manganaro, M., Manicò, G., Mannheim, K., Marchesi, S., Mariotti, M., Marquez, P., Marsella, G., Martí, J., Martinez, O., Martínez, G., Martínez, M., Mas-Aguilar, A., Maurin, G., Mazin, D., Méndez-Gallego, J., Guillen, E. Mestre, Micanovic, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., Mizuno, T., Gonzalez, M. Molero, Molina, E., Montaruli, T., Moralejo, A., Morcuende, D., Morselli, A., Moya, V., Muraishi, H., Nagataki, S., Nakamori, T., Neronov, A., Nickel, L., Rosillo, M. Nievas, Nikolic, L., Nishijima, K., Noda, K., Nosek, D., Novotny, V., Nozaki, S., Ohishi, M., Ohtani, Y., Oka, T., Okumura, A., Orito, R., Otero-Santos, J., Ottanelli, P., Owen, E., Palatiello, M., Paneque, D., Pantaleo, F. R., Paoletti, R., Paredes, J. M., Pech, M., Pecimotika, M., Peresano, M., Pfeifle, F., Pietropaolo, E., Pihet, M., Pirola, G., Plard, C., Podobnik, F., Pons, E., Prandini, E., Priyadarshi, C., Prouza, M., Rainò, S., Rando, R., Rhode, W., Ribó, M., Righi, C., Rizi, V., Fernandez, G. Rodriguez, Frías, M. D. Rodríguez, Ruina, A., Ruiz-Velasco, E., Saito, T., Sakurai, S., Sanchez, D. A., Sano, H., Šarić, T., Sato, Y., Saturni, F. G., Savchenko, V., Schiavone, F., Schleicher, B., Schmuckermaier, F., Schubert, J. L., Schussler, F., Schweizer, T., Arroyo, M. Seglar, Siegert, T., Sitarek, J., Sliusar, V., Strišković, J., Strzys, M., Suda, Y., Tajima, H., Takahashi, H., Takahashi, M., Takata, J., Takeishi, R., Tam, P. H. T., Tanaka, S. J., Tateishi, D., Tavernier, T., Temnikov, P., Terada, Y., Terauchi, K., Terzic, T., Teshima, M., Tluczykont, M., Tokanai, F., Torres, D. F., Travnicek, P., Tutone, A., Vacula, M., Vallania, P., van Scherpenberg, J., Acosta, M. Vázquez, Ventura, S., Verna, G., Viale, I., Vigliano, A., Vigorito, C. F., Visentin, E., Vitale, V., Voitsekhovskyi, V., Voutsinas, G., Vovk, I., Vuillaume, T., Walter, R., Wan, L., Will, M., Wójtowicz, J., Yamamoto, T., Yamazaki, R., Yeung, P. K. H., Yoshida, T., Yoshikoshi, T., Zhang, W., Zywucka, N.
Imaging atmospheric Cherenkov telescopes (IACTs) are used to observe very high-energy photons from the ground. Gamma rays are indirectly detected through the Cherenkov light emitted by the air showers they induce. The new generation of experiments, i
Externí odkaz:
http://arxiv.org/abs/2410.16042
Autor:
D'Auria, Bernardo, Escudero, Carlos
We study the anticipating version of the classical portfolio optimization problem in a financial market with the presence of a trader who possesses privileged information about the future (insider information), but who is also subjected to a delay in
Externí odkaz:
http://arxiv.org/abs/2410.16010
CP violation in neutral $B$ meson oscillations is an experimental observable that could be directly related to the baryon asymmetry of the Universe through the $B$-Mesogenesis mechanism. As this phenomenon is highly suppressed in the Standard Model,
Externí odkaz:
http://arxiv.org/abs/2410.13936
Autor:
Roberts, Connor, Zhang, Ziluo, Rojas, Helder, Bo, Stefano, Escudero, Carlos, Guenneau, Sebastien, Pruessner, Gunnar
We present a novel class of cloaking in which a region of space is concealed from an ensemble of diffusing particles whose individual trajectories are governed by a stochastic (Langevin) equation. In particular, we simulate how different interpretati
Externí odkaz:
http://arxiv.org/abs/2410.04124
Autor:
Abe, S., Abhir, J., Abhishek, A., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Babić, A., de Almeida, U. Barres, Barrio, J. A., Batković, I., Bautista, A., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Bronzini, E., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Cerasole, D., Ceribella, G., Chai, Y., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Delfino, M., Delgado, J., Di Pierro, F., Di Tria, R., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fröse, S., Fukami, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Llorente, J. Herrera, Hrupec, D., Hütten, M., Imazawa, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kayanoki, T., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Leone, F., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Saturni, F. G., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Acosta, M. Vazquez, Ventura, S., Viale, I., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Will, M., Wunderlich, C., Yamamoto, T., Jouvin, L., Linhoff, L., Linhoff, M.
Instruments for gamma-ray astronomy at Very High Energies ($E>100\,{\rm GeV}$) have traditionally derived their scientific results through proprietary data and software. Data standardisation has become a prominent issue in this field both as a requir
Externí odkaz:
http://arxiv.org/abs/2409.18823
Merging parameters of multiple models has resurfaced as an effective strategy to enhance task performance and robustness, but prior work is limited by the high costs of ensemble creation and inference. In this paper, we leverage the abundance of free
Externí odkaz:
http://arxiv.org/abs/2409.15813
Access to quantum computing is steadily increasing each year as the speed advantage of quantum computers solidifies with the growing number of usable qubits. However, the inherent noise encountered when running these systems can lead to measurement i
Externí odkaz:
http://arxiv.org/abs/2409.14831
Real-world applications may be affected by outlying values. In the model-based clustering literature, several methodologies have been proposed to detect units that deviate from the majority of the data (rowwise outliers) and trim them from the parame
Externí odkaz:
http://arxiv.org/abs/2409.07881
The so-called Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning, yielding competitive performance across various modeling tasks. By replacing the
Externí odkaz:
http://arxiv.org/abs/2409.07387