Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Erwin Vu"'
Autor:
Fabio Dennstädt, MD, Janna Hastings, PhD, Paul Martin Putora, MD, PhD, Erwin Vu, Galina F. Fischer, MD, PhD, Krisztian Süveg, MD, Markus Glatzer, MD, Elena Riggenbach, MD, Hông-Linh Hà, Nikola Cihoric, MD
Publikováno v:
Advances in Radiation Oncology, Vol 9, Iss 3, Pp 101400- (2024)
Purpose: Technological progress of machine learning and natural language processing has led to the development of large language models (LLMs), capable of producing well-formed text responses and providing natural language access to knowledge. Modern
Externí odkaz:
https://doaj.org/article/3813e39df6b140c4af8be6e9fd1a3b12
Autor:
Erwin Vu, Manolis Pratsinis, Ludwig Plasswilm, Hans-Peter Schmid, Cédric Panje, Patrick Betschart
Publikováno v:
Current Oncology, Vol 28, Iss 5, Pp 3420-3429 (2021)
As multiple different treatment options are available for prostate cancer (PCa) and YouTube is commonly used as a source for medical information, we performed a systematic and comparative assessment of available videos guiding patients on their choic
Externí odkaz:
https://doaj.org/article/1e159b93d79741d3b3fb2fa7e7c3b687
Autor:
Enkelejda Lamaj, Erwin Vu, Janita E. van Timmeren, Chiara Leonardi, Louise Marc, Izabela Pytko, Matthias Guckenberger, Panagiotis Balermpas
Publikováno v:
Radiation Oncology, Vol 16, Iss 1, Pp 1-12 (2021)
Abstract Background Definitive chemoradiotherapy (CRT) is standard of care for nasopharyngeal carcinoma. Due to the tumor localization and concomitant platinum-based chemotherapy, hearing impairment is a frequent complication, without defined dose-th
Externí odkaz:
https://doaj.org/article/9696a0b3d6bd44caa833b8ea8e7f8fdc
Autor:
Philipp Sager, Lukas Näf, Erwin Vu, Tim Fischer, Paul M. Putora, Felix Ehret, Christoph Fürweger, Christina Schröder, Robert Förster, Daniel R. Zwahlen, Alexander Muacevic, Paul Windisch
Publikováno v:
Diagnostics, Vol 11, Iss 9, p 1676 (2021)
Introduction: Many proposed algorithms for tumor detection rely on 2.5/3D convolutional neural networks (CNNs) and the input of segmentations for training. The purpose of this study is therefore to assess the performance of tumor detection on single
Externí odkaz:
https://doaj.org/article/29c3347e1f164b03b0e717baf1786d7d
Autor:
Erwin Vu, Jörg Schilling, Jean-Jacques Stelmes, Jonas Dülk, F Förster, Christina Schröder, Jennifer Vu, Robert Förster
Publikováno v:
Breast Care
Introduction: In the spring of 2020, coronavirus disease 2019 posed a substantial challenge for countries and their healthcare systems. In Germany, over 70% of all cancer patients are treated in an outpatient setting, so gynecologic oncology practice
Autor:
Erwin Vu, Matthias Guckenberger, Michael Weller, Caroline Hertler, Dorothee Gramatzki, Nicolaus Andratschke, Christina Schröder
Publikováno v:
Journal of Cancer Research and Clinical Oncology. 148:2127-2136
Purpose There is limited information on treatment recommendations for glioblastoma patients with poor performance status. Here, we aim to evaluate the association of radiotherapy on survival in glioblastoma patients presenting with poor postoperative
Publikováno v:
Strahlentherapie Und Onkologie
Autor:
Carole Koechli, Erwin Vu, Philipp Sager, Lukas Näf, Tim Fischer, Paul M. Putora, Felix Ehret, Christoph Fürweger, Christina Schröder, Robert Förster, Daniel R. Zwahlen, Alexander Muacevic, Paul Windisch
Publikováno v:
Koechli, Carole; Vu, Erwin; Sager, Philipp; Näf, Lukas; Fischer, Tim; Putora, Paul M; Ehret, Felix; Fürweger, Christoph; Schröder, Christina; Förster, Robert; Zwahlen, Daniel R; Muacevic, Alexander; Windisch, Paul (2022). Convolutional Neural Networks to Detect Vestibular Schwannomas on Single MRI Slices: A Feasibility Study. Cancers, 14(9) MDPI AG 10.3390/cancers14092069
Cancers; Volume 14; Issue 9; Pages: 2069
Cancers; Volume 14; Issue 9; Pages: 2069
In this study. we aimed to detect vestibular schwannomas (VSs) in individual magnetic resonance imaging (MRI) slices by using a 2D-CNN. A pretrained CNN (ResNet-34) was retrained and internally validated using contrast-enhanced T1-weighted (T1c) MRI
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9e6a24b2727b836e7a005442ea92a20
https://boris.unibe.ch/170043/1/cancers-14-02069-v2.pdf
https://boris.unibe.ch/170043/1/cancers-14-02069-v2.pdf
Autor:
Christina Schröder, Hongjian Tang, Paul Windisch, Daniel Rudolf Zwahlen, André Buchali, Erwin Vu, Tilman Bostel, Tanja Sprave, Thomas Zilli, Vedang Murthy, Robert Förster
Publikováno v:
Cancers, Vol 14, Iss 696, p 696 (2022)
(1) Background: Prostate cancer is the most common cancer in men and can be treated with radical prostatectomy (RPE) or radiotherapy in the primary setting. Stereotactic radiotherapy (SBRT) has proven to be effective and well tolerated in this settin
Autor:
Felix Ehret, Tim Fischer, Daniel R. Zwahlen, Christina Schröder, Paul Windisch, Philipp Sager, Lukas Näf, Christoph Fürweger, Erwin Vu, Paul Martin Putora, Alexander Muacevic, Robert Förster
Publikováno v:
Diagnostics
Volume 11
Issue 9
Diagnostics, Vol 11, Iss 1676, p 1676 (2021)
Sager, Philipp; Näf, Lukas; Vu, Erwin; Fischer, Tim; Putora, Paul M.; Ehret, Felix; Fürweger, Christoph; Schröder, Christina; Förster, Robert; Zwahlen, Daniel R.; Muacevic, Alexander; Windisch, Paul (2021). Convolutional Neural Networks for Classifying Laterality of Vestibular Schwannomas on Single MRI Slices-A Feasibility Study. Diagnostics, 11(9) MDPI 10.3390/diagnostics11091676
Volume 11
Issue 9
Diagnostics, Vol 11, Iss 1676, p 1676 (2021)
Sager, Philipp; Näf, Lukas; Vu, Erwin; Fischer, Tim; Putora, Paul M.; Ehret, Felix; Fürweger, Christoph; Schröder, Christina; Förster, Robert; Zwahlen, Daniel R.; Muacevic, Alexander; Windisch, Paul (2021). Convolutional Neural Networks for Classifying Laterality of Vestibular Schwannomas on Single MRI Slices-A Feasibility Study. Diagnostics, 11(9) MDPI 10.3390/diagnostics11091676
Introduction: Many proposed algorithms for tumor detection rely on 2.5/3D convolutional neural networks (CNNs) and the input of segmentations for training. The purpose of this study is therefore to assess the performance of tumor detection on single