Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Erwin Kleinfeld"'
Autor:
Erwin Kleinfeld, Yoav Segev
Publikováno v:
Mathematical Proceedings of the Royal Irish Academy. 122:1-4
Autor:
Yoav Segev, Erwin Kleinfeld
Publikováno v:
Communications in Algebra. 49:5347-5353
In this paper we prove that if $R$ is a proper alternative ring whose additive group has no $3$-torsion and whose non-zero commutators are not zero-divisors, then $R$ has no zero-divisors. It follows from a theorem of Bruck and Kleinfeld that if, in
Autor:
Erwin Kleinfeld, Yoav Segev
The purpose of this short note is to prove that if $R$ is an alternative ring whose associators are not zero-divisors, then $R$ has no zero divisors. By a result of Bruck and Kleinfeld, if, in addition, the characteristic of $R$ is not $2,$ then the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f240d2e2bf616c0d0db7ce764941855
http://arxiv.org/abs/2106.11100
http://arxiv.org/abs/2106.11100
Autor:
Margaret Kleinfeld, Erwin Kleinfeld
Publikováno v:
Communications in Algebra. 27:1313-1320
(1999). On the nucleus of certain lie admissible rings. Communications in Algebra: Vol. 27, No. 3, pp. 1313-1320.
Publikováno v:
Communications in Algebra. 25:3147-3153
Autor:
Erwin Kleinfeld, Margaret Kleinfeld
Publikováno v:
Communications in Algebra. 24:1707-1711
Autor:
Erwin Kleinfeld, Harry F. Smith
Publikováno v:
Communications in Algebra. 23:5077-5083
Autor:
Erwin Kleinfeld, Harry F. Smith
Publikováno v:
Bulletin of the Australian Mathematical Society. 50:287-298
A ring is called s–prime if the 2-sided annihilator of a nonzero ideal must be zero. In particular, any simple ring or prime (—1, 1) ring is s–prime. Also, a nonzero s–prime right alternative ring, with characteristic ≠ 2, cannot be right n
Publikováno v:
International Journal of Computer Mathematics. 49:19-27
Albert is an interactive computer system for building nonassociative algebras [2]. In this paper, we suggest certain techniques for using Albert that allow one to posit and test hypotheses effectively. This process provides a fast way to achieve new
Autor:
Harry F. Smith, Erwin Kleinfeld
Publikováno v:
Bulletin of the Australian Mathematical Society. 46:81-90
Let A be a right alternative algebra, and [A, A] be the linear span of all commutators in A. If [A, A] is contained in the left nucleus of A, then left nilpotence implies nilpotence. If [A, A] is contained in the right nucleus, then over a commutativ