Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Erwin, Bolthausen"'
Autor:
Christof, Külske, Aernout C. D. van, Enter, Louis-Pierre, Arguin, Roberto, Persechino, Erwin, Bolthausen, Jiri, Cerny, Gayrard-Troy, Véronique, Lisa, Hartung, Francesco, Guerra, Goetz, Kersting, Nicola, Kistler, Adrien, Schertzer, Marius A., Schmidt, Lily Z., Wang, Reza, Gheissari, Charles M., Newman, Daniel L., Stein, Pietro, Caputo, Dmitry, Ioffe, Vitali, Wachtel, Alessandra, Faggionato, Gayrard, Véronique
Publikováno v:
Véronique Gayrard, Louis-Pierre Arguin, Nicola Kistler, Irina Kourkova. Springer Nature, https://link.springer.com/book/10.1007/978-3-030-29077-1 (293), 2019, Springer Proceedings in Mathematics & Statistics, ⟨10.1007/978-3-030-29077-1⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1642d0505779b3baf49406ed33dc6750
https://hal.science/hal-02379251
https://hal.science/hal-02379251
Autor:
Erwin Bolthausen
Publikováno v:
Statistical Mechanics of Classical and Disordered Systems ISBN: 9783030290764
We give a proof of the replica symmetric formula for the free energy of the Sherrington-Kirkpatrick model in high temperature which is based on the TAP formula. This is achieved by showing that the conditional annealed free energy equals the quenched
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12e63cd81725c7c429bc588397f0f3fb
https://doi.org/10.1007/978-3-030-29077-1_4
https://doi.org/10.1007/978-3-030-29077-1_4
Autor:
Erwin Bolthausen, M. van den Berg
Estimates for the Dirichlet eigenfunctions near the boundary of an open, bounded set in euclidean space are obtained. It is assumed that the boundary satisfies a uniform capacitary density condition.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6132ab5ce4c3f7d8386209ad53b2d08e
http://doc.rero.ch/record/291275/files/59-2-607.pdf
http://doc.rero.ch/record/291275/files/59-2-607.pdf
Publikováno v:
Potential Analysis, 48(3), 375-403
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
van den Berg, M, Bolthausen, E & den Hollander, F 2018, ' Torsional Rigidity for Regions with a Brownian Boundary ', Potential Analysis, vol. 48, no. 3, pp. 375-403 . https://doi.org/10.1007/s11118-017-9640-z
Potential Analysis
Let $T^m$ be the $m$-dimensional unit torus, $m \in N$. The torsional rigidity of an open set $\Omega \subset T^m$ is the integral with respect to Lebesgue measure over all starting points $x \in \Omega$ of the expected lifetime in $\Omega$ of a Brow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a2e6382cfc8f0c7632c039a75c86fe4d
https://hdl.handle.net/1887/58455
https://hdl.handle.net/1887/58455
We consider the membrane model, that is the centered Gaussian field on $\mathbb Z^d$ whose covariance matrix is given by the inverse of the discrete Bilaplacian. We impose a $\delta-$pinning condition, giving a reward of strength $\varepsilon$ for th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88be2f0e3e983ba5887049ad23fb467c
Autor:
Erwin Bolthausen
Publikováno v:
Elemente der Mathematik. :134-143
Autor:
Nicola Kistler, Erwin Bolthausen
Publikováno v:
Stochastic Processes and their Applications. 119(7):2357-2386
We study the Gibbs measure of the nonhierarchical versions of the Generalized Random Energy Models introduced in previous work. We prove that the ultrametricity holds only provided some nondegeneracy conditions on the hamiltonian are met.
Revise
Revise
Autor:
Ilya Goldsheid, Erwin Bolthausen
Publikováno v:
Communications in Mathematical Physics. 278:253-288
We consider a recurrent random walk (RW) in random environment (RE) on a strip. We prove that if the RE is i. i. d. and its distribution is not supported by an algebraic subsurface in the space of parameters defining the RE then the RW exhibits the "
Publikováno v:
Annals of Probability
The Annals of Probability
Annals of Probability, 43(2), 875-933
Ann. Probab. 43, no. 2 (2015), 875-933
The Annals of Probability
Annals of Probability, 43(2), 875-933
Ann. Probab. 43, no. 2 (2015), 875-933
In this paper we consider a two-dimensional copolymer consisting of a random concatenation of hydrophobic and hydrophilic monomers near a linear interface separating oil and water acting as solvents. The configurations of the copolymer are directed p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::178348186624c523c047ce01c836f33c
https://hdl.handle.net/1887/49807
https://hdl.handle.net/1887/49807
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 54, no. 1 (2018), 141-153
Annales de l'institut Henri Poincare (B): Probability and Statistics, 54(1), 141-153. Institute of Mathematical Statistics
Annales de l'institut Henri Poincare (B): Probability and Statistics, 54(1), 141-153. Institute of Mathematical Statistics
We show Green's function asymptotic upper bound for the two-point function of weakly self-avoiding walk in dimension bigger than 4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b2c2cd633ef40cb4520e30bf2b5db90