Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Ervin Győri"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 44, Iss 1, p 151 (2024)
Externí odkaz:
https://doaj.org/article/035a5b1b68aa4803962fce79ad77cb91
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 24, no 2, Iss Graph Theory (2023)
In a generalized Tur\'an problem, two graphs $H$ and $F$ are given and the question is the maximum number of copies of $H$ in an $F$-free graph of order $n$. In this paper, we study the number of double stars $S_{k,l}$ in triangle-free graphs. We als
Externí odkaz:
https://doaj.org/article/5a8781071a274c8e9036907109cebbbd
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 21 no. 1, ICGT 2018 (2019)
Generalizing Tur\'an's classical extremal problem, Alon and Shikhelman investigated the problem of maximizing the number of $T$ copies in an $H$-free graph, for a pair of graphs $T$ and $H$. Whereas Alon and Shikhelman were primarily interested in de
Externí odkaz:
https://doaj.org/article/38423f730f254b90be23c728947a55c1
Publikováno v:
Discrete Applied Mathematics. 317:75-85
Publikováno v:
Journal of Graph Theory. 99:378-398
Publikováno v:
Graphs and Combinatorics. 37:2287-2304
Let $$\mathrm{pr}(K_{n}, G)$$ pr ( K n , G ) be the maximum number of colors in an edge-coloring of $$K_{n}$$ K n with no properly colored copy of G. For a family $${\mathcal {F}}$$ F of graphs, let $$\mathrm{ex}(n, {\mathcal {F}})$$ ex ( n , F ) be
Publikováno v:
Journal of Combinatorial Theory, Series B. 148:239-250
We study the structure of r -uniform hypergraphs containing no Berge cycles of length at least k for k ≤ r , and determine that such hypergraphs have some special substructure. In particular we determine the extremal number of such hypergraphs, giv
Publikováno v:
Discrete Applied Mathematics. 291:129-142
We call a subgraph of an edge-colored graph rainbow, if all of its edges have different colors. The anti-Ramsey number of a graph G in a complete graph K n , denoted by a r ( K n , G ) , is the maximum number of colors in an edge-coloring of K n with
Publikováno v:
Discrete Mathematics. 346:113286
Publikováno v:
Discrete Applied Mathematics. 289:262-269
The Wiener index of a graph G , denoted W ( G ) , is the sum of the distances between all non-ordered pairs of vertices in G .E. Czabarka, et al. conjectured that for a simple quadrangulation graph G on n vertices, n ≥ 4 , W ( G ) ≤ 1 12 n 3 + 7