Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Ertl, with an appendix by Veronika"'
Let $X$ be a smooth projective integral variety over a finitely generated field $k$ of characteristic $p>0$. We show that the finiteness of the exponent of the $p$-primary part of $\mathrm{Br}(X_{k^s})^{G_k}$ is equivalent to the Tate conjecture for
Externí odkaz:
http://arxiv.org/abs/2406.19518