Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Ertekin, Seyda"'
In this study, a novel approach is demonstrated for converting calorimeter images from fast simulations to those akin to comprehensive full simulations, utilizing conditional Generative Adversarial Networks (GANs). The concept of pix2pix is tailored
Externí odkaz:
http://arxiv.org/abs/2401.02248
Autor:
Büyükşahin, Ümit Çavuş, Ertekin, Şeyda
Many applications in different domains produce large amount of time series data. Making accurate forecasting is critical for many decision makers. Various time series forecasting methods exist which use linear and nonlinear models separately or combi
Externí odkaz:
http://arxiv.org/abs/1812.11526
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Petroleum Science and Engineering December 2021 207
Publikováno v:
Annals of Applied Statistics 2015, Vol. 9, No. 1, 122-144
Reactive point processes (RPPs) are a new statistical model designed for predicting discrete events in time based on past history. RPPs were developed to handle an important problem within the domain of electrical grid reliability: short-term predict
Externí odkaz:
http://arxiv.org/abs/1505.07661
Thesis (Ph.D.)--Pennsylvania State University, 2009.
Mode of access: World Wide Web. Thesis advisor: C. Lee Giles.
Mode of access: World Wide Web. Thesis advisor: C. Lee Giles.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Büyükşahin, Ümit Çavuş, Ertekin, Şeyda
Publikováno v:
In Neurocomputing 7 October 2019 361:151-163
The problem of "approximating the crowd" is that of estimating the crowd's majority opinion by querying only a subset of it. Algorithms that approximate the crowd can intelligently stretch a limited budget for a crowdsourcing task. We present an algo
Externí odkaz:
http://arxiv.org/abs/1204.3611
Autor:
Kavakci, Gurcan1 (AUTHOR) gurcan.kavakci@metu.edu.tr, Cicekdag, Begum2 (AUTHOR), Ertekin, Seyda1 (AUTHOR)
Publikováno v:
Energy Technology. Feb2024, Vol. 12 Issue 2, p1-9. 9p.