Zobrazeno 1 - 10
of 346
pro vyhledávání: '"Errico Presutti"'
Publikováno v:
Brazilian Journal of Probability and Statistics, 2015 Jan 01. 29(2)
Externí odkaz:
https://www.jstor.org/stable/26358973
Publikováno v:
Brazilian Journal of Probability and Statistics, 2015 Jan 01. 29(2)
Externí odkaz:
https://www.jstor.org/stable/26358972
Publikováno v:
Rivista Internazionale di Scienze Sociali e Discipline Ausiliarie, 1901 Mar 01. 25(99), 427-430.
Externí odkaz:
https://www.jstor.org/stable/41571970
We derive macroscopic equations for a generalized contact process that is inspired by a neuronal integrate and fire model on the lattice $\mathbb{Z}^d$. The states at each lattice site can take values in $0,\ldots,k$. These can be interpreted as neur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16c54e37e9fe8224934542e05261bcae
https://hdl.handle.net/11697/200819
https://hdl.handle.net/11697/200819
Autor:
Errico Presutti
Publikováno v:
Rendiconti di Matematica e delle Sue Applicazioni, Vol 27, Iss 1, Pp 17-36 (2007)
These are notes of a Colloquium given on May 30, 2005, at the Mathematical Department of the University of Roma La Sapienza. The notes based on researches of the author in statistical mechanics are intended to underline contiguities with other discip
Externí odkaz:
https://doaj.org/article/1244b4a20ffb44ebaceec5e5bed127a1
Publikováno v:
Journal of Statistical Physics, 180 (2020)(1-6)
We study the Ginzburg-Landau stochastic models in infinite domains with some special geometry and prove that without the help of external forces there are stationary measures with non zero current in three or more dimensions.
35 pages
35 pages
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2019, 175 (1), pp.203-211. ⟨10.1007/s1095⟩
Journal of Statistical Physics, Springer Verlag, 2019, 175 (1), pp.203-211. ⟨10.1007/s1095⟩
International audience; We characterize the non equilibrium stationary states in two classes of systems where phase transitions are present. We prove that the interface in the limit is a plane which separates the two phases.