Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Erlihson, Michael"'
We establish a characterization of coagulation-fragmentation processes, such that the induced birth and death processes depicting the total number of groups at time $t\ge 0$ are time homogeneous. Based on this, we provide a characterization of mean-f
Externí odkaz:
http://arxiv.org/abs/0711.0503
We give a probalistic proof of the famous Meinardus' asymptotic formula for the number of weighted partitions with weakened one of the three Meinardus' conditions, and extend the resulting version of the theorem to other two classis types of decompos
Externí odkaz:
http://arxiv.org/abs/math/0701584
Autor:
Erlihson, Michael, Granovsky, Boris
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, $a_k\sim Ck^{p-1}, k\to\infty, p>0$,where $C$ is a positive constant. The measures considere
Externí odkaz:
http://arxiv.org/abs/math/0507343
Autor:
Erlihson, Michael, Granovsky, Boris
We establish the central limit theorem for the number of groups at the equilibrium of a coagulation-fragmentation process given by a parameter function with polynomial rate of growth. The result obtained is compared with the one for random combinator
Externí odkaz:
http://arxiv.org/abs/math/0212170
Publikováno v:
In Advances in Applied Mathematics 2008 41(3):307-328
Autor:
Granovsky, Boris1 mar18aa@techunix.technion.ac.il, Erlihson, Michael1 maerlich@tx.technion.ac.il
Publikováno v:
Journal of Statistical Physics. Feb2009, Vol. 134 Issue 3, p567-588. 22p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Random Structures & Algorithms; Sep2004, Vol. 25 Issue 2, p227-245, 19p