Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Erika Mináriková"'
Autor:
Anna Saranti, Miroslav Hudec, Erika Mináriková, Zdenko Takáč, Udo Großschedl, Christoph Koch, Bastian Pfeifer, Alessa Angerschmid, Andreas Holzinger
Publikováno v:
Machine Learning and Knowledge Extraction, Vol 4, Iss 4, Pp 924-953 (2022)
In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and experts need to classify entities into two binary classes (yes/no, good/bad, sufficient/insufficient, benign/malign, etc.). For many entities, this decisio
Externí odkaz:
https://doaj.org/article/ec0de37f48924e4c8364acae29f28630
Autor:
Erika Mináriková
Publikováno v:
EDAMBA 2021 : COVID-19 Recovery: The Need for Speed : Conference Proceedings.
Classification allows us to handle the large amount of data that is available nowadays. In our work, we use the classification features to divide employees into the several classes and examine the differences between the classical and flexible classi
Publikováno v:
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783031089701
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4df220e0a34cbac1010d70200531e77f
https://doi.org/10.1007/978-3-031-08971-8_31
https://doi.org/10.1007/978-3-031-08971-8_31
Publikováno v:
Knowledge-Based Systems. 220:106916
We propose a novel classification according to aggregation functions of mixed behaviour by variability in ordinal sums of conjunctive and disjunctive functions. Consequently, domain experts are empowered to assign only the most important observations