Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Erik Wahlén"'
Publikováno v:
Water Waves. 5:65-99
We study the transverse dynamics of two-dimensional traveling periodic waves for the gravity–capillary water-wave problem. The governing equations are the Euler equations for the irrotational flow of an inviscid fluid layer with free surface under
Autor:
Erik Wahlén, Jörg Weber
Publikováno v:
International Mathematics Research Notices.
We study two-dimensional periodic capillary-gravity water waves propagating at the free surface of water in a flow with arbitrary, prescribed vorticity over a flat bed. Using conformal mappings and a new reformulation of Bernoulli’s equation, the p
Publikováno v:
Truong, T, Wahlén, E & Wheeler, M 2022, ' Global bifurcation of solitary waves for the Whitham equation ', Mathematische Annalen, vol. 383, pp. 1521-1565 . https://doi.org/10.1007/s00208-021-02243-1
The Whitham equation is a nonlocal shallow water-wave model which combines the quadratic nonlinearity of the KdV equation with the linear dispersion of the full water wave problem. Whitham conjectured the existence of a highest, cusped, traveling-wav
Publikováno v:
Studies in applied mathematics (Cambridge, Mass.). 149(4)
We study steady axisymmetric water waves with general vorticity and swirl, subject to the influence of surface tension. This can be formulated as an elliptic free boundary problem in terms of Stokes' stream function. A change of variables allows us t
Publikováno v:
Oberwolfach Reports. 16:1919-1979
Autor:
Mats Ehrnström, Erik Wahlén
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 36:1603-1637
We consider the Whitham equation $u_t + 2u u_x+Lu_x = 0$, where L is the nonlocal Fourier multiplier operator given by the symbol $m(\xi) = \sqrt{\tanh \xi /\xi}$. G. B. Whitham conjectured that for this equation there would be a highest, cusped, tra
Autor:
Mark Schlutow, Erik Wahlén
Publikováno v:
Mathematics of Climate and Weather Forecasting, Vol 6, Iss 1, Pp 97-112 (2020)
This study investigates strongly nonlinear gravity waves in the compressible atmosphere from the Earth’s surface to the deep atmosphere. These waves are effectively described by Grimshaw’s dissipative modulation equations which provide the basis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::225789f65ea5b1931abc083f476af397
http://arxiv.org/abs/1911.12669
http://arxiv.org/abs/1911.12669
Publikováno v:
Archive for Rational Mechanics and Analysis
We prove the existence of three-dimensional steady gravity-capillary waves with vorticity on water of finite depth. The waves are periodic with respect to a given two-dimensional lattice and the relative velocity field is a Beltrami field, meaning th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78da379cf8c4d560f7268f28e1383ccd
http://arxiv.org/abs/1908.02655
http://arxiv.org/abs/1908.02655
Autor:
Boris Buffoni, Erik Wahlén
Publikováno v:
Anal. PDE 12, no. 5 (2019), 1225-1258
Analysis & PDE
Analysis & PDE
We consider the stationary flow of an inviscid and incompressible fluid of constant density in the region $D=(0, L)\times \mathbb{R}^2$. We are concerned with flows that are periodic in the second and third variables and that have prescribed flux thr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c98b6a28009fa4b9a71033ae7415e405
https://projecteuclid.org/euclid.apde/1546657231
https://projecteuclid.org/euclid.apde/1546657231
Autor:
Evgeniy Lokharu, Erik Wahlén
Publikováno v:
Nonlinear Analysis
We consider steady three-dimensional gravity–capillary water waves with vorticity propagating on water of finite depth. We prove a variational principle for doubly periodic waves with relative velocities given by Beltrami vector fields, under gener