Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Erik B. Dam"'
Autor:
Melanie Ganz, Marleen de Bruijne, Erik B. Dam, Paola Pettersen, Morten A. Karsdal, Claus Christiansen, Mads Nielsen
Publikováno v:
International Journal of Biomedical Imaging, Vol 2012 (2012)
Abdominal aortic calcifications (AACs) correlate strongly with coronary artery calcifications and can be predictors of cardiovascular mortality. We investigated whether size, shape, and distribution of AACs are related to mortality and how such progn
Externí odkaz:
https://doaj.org/article/e9762cf4b8a242aaa9a3c37baea230cc
Publikováno v:
Journal of Magnetic Resonance Imaging, 55(6), 1650-1663. John Wiley & Sons Inc.
Perslev, M, Pai, A, Runhaar, J, Igel, C & Dam, E B 2022, ' Cross-Cohort Automatic Knee MRI Segmentation With Multi-Planar U-Nets ', Journal of Magnetic Resonance Imaging, vol. 55, no. 2, pp. 1650-1663 . https://doi.org/10.1002/jmri.27978
Perslev, M, Pai, A, Runhaar, J, Igel, C & Dam, E B 2022, ' Cross-Cohort Automatic Knee MRI Segmentation With Multi-Planar U-Nets ', Journal of Magnetic Resonance Imaging, vol. 55, no. 2, pp. 1650-1663 . https://doi.org/10.1002/jmri.27978
Background: Segmentation of medical image volumes is a time-consuming manual task. Automatic tools are often tailored toward specific patient cohorts, and it is unclear how they behave in other clinical settings. Purpose: To evaluate the performance
Autor:
C. Kent Kwoh, Michael C. Nevitt, Jamie E. Collins, Erik B. Dam, Elena Losina, Leticia A Deveza, Virginia B. Kraus, Ali Guermazi, Steven C. Hoffmann, Jeffrey N. Katz, Frank W. Roemer, Michael A. Bowes, Felix Eckstein, David J. Hunter, John A. Lynch
Publikováno v:
Arthritis Care Res (Hoboken)
To determine the optimal combination of imaging and biochemical biomarkers for use in the prediction of knee osteoarthritis (OA) progression.The present study was a nested case-control trial from the Foundation of the National Institutes of Health OA
Publikováno v:
Cartilage, 13(1_suppl), 424S-427S. SAGE Publishing
Runhaar, J, Dam, E B, Oei, E H G & Bierma-Zeinstra, S M A 2019, ' Medial Cartilage Surface Integrity as a Surrogate Measure for Incident Radiographic Knee Osteoarthritis following Weight Changes ', Cartilage, vol. 13, no. Suppl. 1, pp. 424S-427S . https://doi.org/10.1177/1947603519892305
Cartilage
Runhaar, J, Dam, E B, Oei, E H G & Bierma-Zeinstra, S M A 2019, ' Medial Cartilage Surface Integrity as a Surrogate Measure for Incident Radiographic Knee Osteoarthritis following Weight Changes ', Cartilage, vol. 13, no. Suppl. 1, pp. 424S-427S . https://doi.org/10.1177/1947603519892305
Cartilage
Autor:
Erik B Dam, Arjun D Desai, Cem M Deniz, Haresh R Rajamohan, Ravinder Regatte, Claudia Iriondo, Valentina Pedoia, Sharmila Majumdar, Mathias Perslev, Christian Igel, Akshay Pai, Sibaji Gaj, Mingrui Yang, Kunio Nakamura, Xiaojuan Li, Hasan Maqbool, Ismail Irmakci, Sang-Eun Song, Ulas Bagci, Brian Hargreaves, Garry Gold, Akshay Chaudhari
Publikováno v:
Osteoarthritis Imaging. 3:100087
Autor:
Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael Vivanti, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna Shit, Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer, Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae, Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz, Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue, Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz, Bjoern Menze
Publikováno v:
Med. Image Anal. 84:102680 (2022)
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
Medical Image Analysis, 84
Bilic, P, Christ, P, Li, H B, Vorontsov, E, Ben-Cohen, A, Kaissis, G, Szeskin, A, Jacobs, C, Mamani, G E H, Chartrand, G, Lohöfer, F, Holch, J W, Sommer, W, Hofmann, F, Hostettler, A, Lev-Cohain, N, Drozdzal, M, Amitai, M M, Vivanti, R, Sosna, J, Ezhov, I, Sekuboyina, A, Navarro, F, Kofler, F, Paetzold, J C, Shit, S, Hu, X, Lipková, J, Rempfler, M, Piraud, M, Kirschke, J, Wiestler, B, Zhang, Z, Hülsemeyer, C, Beetz, M, Ettlinger, F, Antonelli, M, Bae, W, Bellver, M, Bi, L, Chen, H, Chlebus, G, Dam, E B, Dou, Q, Fu, C-W, Georgescu, B, Giró-I-Nieto, X, Gruen, F, Han, X, Heng, P-A, Hesser, J, Moltz, J H, Igel, C, Isensee, F, Jäger, P, Jia, F, Kaluva, K C, Khened, M, Kim, I, Kim, J-H, Kim, S, Kohl, S, Konopczynski, T, Kori, A, Krishnamurthi, G, Li, F, Li, H, Li, J, Li, X, Lowengrub, J, Ma, J, Maier-Hein, K, Maninis, K-K, Meine, H, Merhof, D, Pai, A, Perslev, M, Petersen, J, Pont-Tuset, J, Qi, J, Qi, X, Rippel, O, Roth, K, Sarasua, I, Schenk, A, Shen, Z, Torres, J, Wachinger, C, Wang, C, Weninger, L, Wu, J, Xu, D, Yang, X, Yu, S C-H, Yuan, Y, Yue, M, Zhang, L, Cardoso, J, Bakas, S, Braren, R, Heinemann, V, Pal, C, Tang, A, Kadoury, S, Soler, L, van Ginneken, B, Greenspan, H, Joskowicz, L & Menze, B 2023, ' The Liver Tumor Segmentation Benchmark (LiTS) ', Medical Image Analysis, vol. 84, 102680 . https://doi.org/10.1016/j.media.2022.102680
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e22b7afec9cac0b49d2cb615d2787280
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=67003
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164422
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4599c9d122f0d5bcd31643c5e55ce603
https://doi.org/10.1007/978-3-031-16443-9_49
https://doi.org/10.1007/978-3-031-16443-9_49
Publikováno v:
Selvan, R, Dam, E B, Flensborg, S A & Petersen, J 2022, ' Patch-based Medical Image Segmentation using Matrix Product State Tensor Networks ', The Journal of Machine Learning for Biomedical Imaging, vol. 2022, 005, pp. 1-24 . https://doi.org/10.48550/arXiv.2109.07138
Tensor networks are efficient factorisations of high-dimensional tensors into a network of lower-order tensors. They have been most commonly used to model entanglement in quantum many-body systems and more recently are witnessing increased applicatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87659be48946ad2b3a7800520bdbc70d
http://arxiv.org/abs/2109.07138
http://arxiv.org/abs/2109.07138
Autor:
Barbara A. K. Kreilkamp, Sudhakar Tummala, Niels K. Focke, Erik B. Dam, Venkata Sainath Gupta Thadikemalla
Publikováno v:
Tummala, S, Thadikemalla, V S G, Kreilkamp, B A K, Dam, E B & Focke, N K 2021, ' Fully automated quality control of rigid and affine registrations of T1w and T2w MRI in big data using machine learning ', Computers in Biology and Medicine, vol. 139, 104997 . https://doi.org/10.1016/j.compbiomed.2021.104997
BackgroundMagnetic resonance imaging (MRI)-based morphometry and relaxometry are proven methods for the structural assessment of the human brain in several neurological disorders. These procedures are generally based on T1-weighted (T1w) and/or T2-we
Publikováno v:
Plant and Soil. 441:657-672
Roots are vital organs for plants, but the assessment of root traits is difficult, particularly in deep soil layers under natural field conditions. A popular technique to investigate root growth under field or semi-field conditions is the use of mini