Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Erich Häusler"'
Autor:
Pia eStaehr, Tanja eLöttgert, Alexander eChristmann, Stephan eKrueger, Christian eRosar, Jakub eRolcik, Ondrej eNovak, Miroslav eStrnad, Kirsten eBell, Andreas P M Weber, Ulf-Ingo eFlügge, Rainer Erich Häusler
Publikováno v:
Frontiers in Plant Science, Vol 5 (2014)
Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary
Externí odkaz:
https://doaj.org/article/7c4d69e51cd447aaa36d0f6a7316cb9a
Publikováno v:
Frontiers in Plant Science, Vol 3 (2012)
An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch (mutation in A
Externí odkaz:
https://doaj.org/article/464bcc6219de48a3a818ca2799e46eb3
Autor:
Erich Häusler, Harald Luschgy
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept.
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
We are interested here in stable limit theorems motivated by asymptotic statistical inference.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::42b0a992310f4256021f1dc32e419b9d
https://doi.org/10.1007/978-3-319-18329-9_10
https://doi.org/10.1007/978-3-319-18329-9_10
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
Martingale central limit theorems are a generalization of classical central limit theorems for sums of independent random variables which have found a wide range of applications. They are presented here with stable convergence in view.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5476e838bffc415612c2fffd0bf03369
https://doi.org/10.1007/978-3-319-18329-9_6
https://doi.org/10.1007/978-3-319-18329-9_6
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
In this chapter we establish a stable limit theorem for “explosive” processes with exponential rates.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::06bcec32e08420f6cfcf822853a7efd9
https://doi.org/10.1007/978-3-319-18329-9_8
https://doi.org/10.1007/978-3-319-18329-9_8
Autor:
Erich Häusler, Harald Luschgy
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::70a735bff14e53720be1fd47b1842687
https://doi.org/10.1007/978-3-319-18329-9_4
https://doi.org/10.1007/978-3-319-18329-9_4
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
In this chapter we present some first results on the stability of limit theorems. More precisely, we derive simple sufficient conditions for distributional limit theorems to be mixing.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b5ffec3990bdbbab3ba4e98f666f4770
https://doi.org/10.1007/978-3-319-18329-9_5
https://doi.org/10.1007/978-3-319-18329-9_5
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
In this and the subsequent chapter we present concrete applications of previous stable limit theorems.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f974ede6344b18b7cbf7494fe834acf2
https://doi.org/10.1007/978-3-319-18329-9_9
https://doi.org/10.1007/978-3-319-18329-9_9
Autor:
Harald Luschgy, Erich Häusler
Publikováno v:
Stable Convergence and Stable Limit Theorems ISBN: 9783319183282
As indicated in the previous chapter, stable convergence of random variables can be seen as suitable convergence of Markov kernels given by conditional distributions. The required facts from the theory of weak convergence of Markov kernels will be pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::89c5aa5af98034b78d4388161aa51cb5
https://doi.org/10.1007/978-3-319-18329-9_2
https://doi.org/10.1007/978-3-319-18329-9_2