Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Eric Schippers"'
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica. 45:1111-1134
Let $R$ be a compact surface and let $\Gamma$ be a Jordan curve which separates $R$ into two connected components $\Sigma_1$ and $\Sigma_2$. A harmonic function $h_1$ on $\Sigma_1$ of bounded Dirichlet norm has boundary values $H$ in a certain confor
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 23:32-51
We consider Riemann surfaces Σ \Sigma with n n borders homeomorphic to S 1 \mathbb {S}^1 and no handles. Using generalized Grunsky operators, we define a period mapping from the infinite-dimensional Teichmüller space of surfaces of this type into t
Autor:
Eric Schippers
Publikováno v:
Israel Journal of Mathematics. 223:449-491
Z. Nehari developed a general technique for obtaining inequalities for conformal maps and domain functions from contour integrals and the Dirichlet principle. Given a harmonic function with singularity on a domain $R$, it associates a monotonic funct
Publikováno v:
Journal d'Analyse Mathématique. 132:229-245
Let Σ be a Riemann surface of genus g bordered by n curves homeomorphic to the circle S1. Consider quasiconformal maps f: Σ→Σ1 such that the restriction to each boundary curve is a Weil-Petersson class quasisymmetry. We show that any such f is h
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Journal of Mathematical Analysis and Applications. 448:864-884
A complex harmonic function of finite Dirichlet energy on a Jordan domain has boundary values in a certain conformally invariant sense, by a construction of H. Osborn. We call the set of such boundary values the Douglas–Osborn space. One may then a
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica. 42:141-147
We prove the well-posedness of a Riemann-Hilbert problem on d-regular qua-sidisks, with boundary data in a class of Besov spaces.
We consider a compact Riemann surface $R$ of arbitrary genus, with a finite number of non-overlapping quasicircles, which separate $R$ into two subsets: a connected Riemann surface $\Sigma$, and the union $\mathcal{O}$ of a finite collection of simpl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86e09ea92fed54bb33027d2305e3ef8d
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417788
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-417788
Autor:
Eric Schippers, Wolfgang Staubach
We give an exposition of results from a crossroad between geometric function theory, harmonic analysis, boundary value problems and approximation theory, which characterize quasicircles. We will specifically expose the interplay between the jump deco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a3caad93872ab8b8939e0b3ca281d165
Autor:
Eric Schippers
Publikováno v:
The Journal of Analysis. 24:209-228
We define a notion of conformal invariance associated with nested domains, suitable for characterizing higher-order information about mapping functions. We give an exposition of our results which yield an infinite-dimensional family of conformal inva
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Complex Analysis and Operator Theory. 12:325-354
Let $$\Gamma $$ be a bounded Jordan curve with complementary components $$\Omega ^{\pm }$$ . We show that the jump decomposition is an isomorphism if and only if $$\Gamma $$ is a quasicircle. We also show that the Bergman space of $$L^{2}$$ harmonic