Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Eric Riedl"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 12 (2024)
We study the enumerativity of Gromov–Witten invariants where the domain curve is fixed in moduli and required to pass through the maximum possible number of points. We say a Fano manifold satisfies asymptotic enumerativity if such invariants are en
Externí odkaz:
https://doaj.org/article/9895be8f2e6345cc98e0ddb057d72102
Autor:
Izzet Coskun, Eric Riedl
Publikováno v:
Proceedings of the London Mathematical Society. 125:1353-1376
Autor:
David Y. Yang, Eric Riedl
Publikováno v:
Journal of Algebraic Geometry. 31:1-12
In this paper we further develop a Grassmannian technique used to prove results about very general hypersurfaces and present three applications. First, we provide a short proof of the Kobayashi conjecture given previously established results on the G
Autor:
Eric Riedl, Roya Beheshti
Publikováno v:
Algebra Number Theory 14, no. 2 (2020), 485-500
Let $X$ be a very general hypersurface of degree $d$ in $\mathbb{P}^n$. We investigate positivity properties of the spaces $R_e(X)$ of degree $e$ rational curves in $X$. We show that for small $e$, $R_e(X)$ has no rational curves meeting the locus of
Publikováno v:
Advances in Mathematics. 408:108557
We prove several classification results for the components of the moduli space of rational curves on a smooth Fano threefold. In particular, we prove a conjecture of Batyrev on the growth of the number of components as the degree increases. The key t
Autor:
Eric Riedl, Roya Beheshti
Publikováno v:
Duke Mathematical Journal. 170
Let $X$ be an arbitrary smooth hypersurface in $\mathbb{C} \mathbb{P}^n$ of degree $d$. We prove the de Jong-Debarre Conjecture for $n \geq 2d-4$: the space of lines in $X$ has dimension $2n-d-3$. We also prove an analogous result for $k$-planes: if
Autor:
Eric Riedl, Izzet Coskun
Publikováno v:
Advances in Mathematics. 350:1314-1323
We prove that a curve of degree dk on a very general surface of degree d ≥ 5 in P 3 has geometric genus at least d k ( d − 5 ) + k 2 + 1 . This gives a substantial improvement on the celebrated genus bounds of Geng Xu. As a corollary, we deduce t
We study the space of rational curves on del Pezzo surfaces in positive characteristic. For most primes p we prove the irreducibility of the moduli space of rational curves of a given nef class, extending results of Testa in characteristic 0. We also
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35bf1731da4d13bb0ac2004515e184fd
Autor:
Eric Riedl, David Y. Yang
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:207-225
We investigate the spaces of rational curves on a general hypersurface. In particular, we show that for a general degree d hypersurface in ℙ n {\mathbb{P}^{n}} with n ≥ d + 2 {n\geq d+2} , the space ℳ ¯ 0 , 0 ( X , e ) {\overline{\mathcal{
Autor:
Eric Riedl, Izzet Coskun
We prove that a general complete intersection of dimension $n$, codimension $c$ and type $d_1, \dots, d_c$ in $\mathbb{P}^N$ has ample cotangent bundle if $c \geq 2n-2$ and the $d_i$'s are all greater than a bound that is $O(1)$ in $N$ and quadratic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6cf49d8487392aa05074d9df311e1b40
http://arxiv.org/abs/1810.07666
http://arxiv.org/abs/1810.07666