Zobrazeno 1 - 10
of 245
pro vyhledávání: '"Eric Jespers"'
Publikováno v:
Journal of Algebra, Vol. 604, no.1, p. 185-223 (2022)
We show that $\mathcal{U}(\mathbb{Z}G)$, the unit group of the integral group ring $\mathbb{Z} G$, either satisfies Kazhdan's property (T) or is, up to commensurability, a non-trivial amalgamated product, in case $G$ is a finite group satisfying some
Publikováno v:
Mathematische Nachrichten, Vol. 296, no.1, p. 8-56 (2023)
Let $G$ be a finite group and $\mathcal{U} (\mathbb{Z} G)$ the unit group of the integral group ring $\mathbb{Z} G$. We prove a unit theorem, namely a characterization of when $\mathcal{U}(\mathbb{Z}G)$ satisfies Kazhdan's property $(\operatorname{T}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a461c763d49e9f77664c8e248733fa83
https://hdl.handle.net/2078.1/271810
https://hdl.handle.net/2078.1/271810
Publikováno v:
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Universitat Autònoma de Barcelona
Given a set-theoretic solution $(X,r)$ of the Yang--Baxter equation, we denote by $M=M(X,r)$ the structure monoid and by $A=A(X,r)$, respectively $A'=A'(X,r)$, the left, respectively right, derived structure monoid of $(X,r)$. It is shown that there
Autor:
Eric Jespers, Wei-Liang Sun
Publikováno v:
Journal of Algebra. 575:127-158
A finite group $G$ is said to have the nilpotent decomposition property (ND) if for every nilpotent element $\alpha$ of the integral group ring $\mathbb{Z}[G]$ one has that $\alpha e$ also belong to $\mathbb{Z}[G]$, for every primitive central idempo
Publikováno v:
Oberwolfach Reports. 16:3207-3242
Publikováno v:
Revista Matemática Complutense. 34:99-129
Given a finite non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation and a field $K$, the structure $K$-algebra of $(X,r)$ is $A=A(K,X,r)=K\langle X\mid xy=uv \mbox{ whenever }r(x,y)=(u,v)\rangle$. Note that $A=\oplus_{n\geq 0} A_
Publikováno v:
Transactions of the American Mathematical Society. 372:7191-7223
For a finite involutive non-degenerate solution $(X,r)$ of the Yang--Baxter equation it is known that the structure monoid $M(X,r)$ is a monoid of I-type, and the structure algebra $K[M(X,r)]$ over a field $K$ share many properties with commutative p
To determine and analyze arbitrary left non-degenerate set-theoretic solutions of the Yang-Baxter equation (not necessarily bijective), we introduce an associative algebraic structure, called a YB-semitruss, that forms a subclass of the category of s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::526781b63cc71388ca5e1f8c116b9c5a
One of the main results stated in Theorem 4.4 of our article, which appears in Trans. Amer. Math. Soc. 372 (2019), no. 10, 7191–7223, is that the structure algebra K [ M ( X , r ) ] K[M(X,r)] , over a field K K , of a finite bijective left non-dege
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7feb9d2ed06431dcd44d7f479266a3d3
https://hdl.handle.net/20.500.14017/331717d7-c765-4cd8-969b-a7f257871dda
https://hdl.handle.net/20.500.14017/331717d7-c765-4cd8-969b-a7f257871dda
A set-theoretic solution of the Pentagon Equation on a non-empty set $S$ is a map $s\colon S^2\to S^2$ such that $s_{23}s_{13}s_{12}=s_{12}s_{23}$, where $s_{12}=s\times\mathrm{id}$, $s_{23}=\mathrm{id}\times s$ and $s_{13}=(\tau\times\mathrm{id})(\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::257519808362d40177490ed9f88bc712
http://arxiv.org/abs/2004.04028
http://arxiv.org/abs/2004.04028