Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Eric Heiden"'
Autor:
Ali Agha, Kyohei Otsu, Benjamin Morrell, David Fan, Rohan Thakker, Angel Santamaria-Navarro, Sung-Kyun Kim, Amanda Bouman, Xianmei Lei, Jeffrey Edlund, Muhammad Ginting, Kamak Ebadi, Matthew Anderson, Torkom Pailevanian, Edward Terry, Michael Wolf, Andrea Tagliabue, Tiago Vaquero, Matteo Palieri, Scott Tepsuporn, Yun Chang, Arash Kalantari, Fernando Chavez, Brett Lopez, Nobuhiro Funabiki, Gregory Miles, Thomas Touma, Alessandro Buscicchio, Jesus Tordesillas, Nikhilesh Alatur, Jeremy Nash, William Walsh, Sunggoo Jung, Hanseob Lee, Christoforos Kanellakis, John Mayo, Scott Harper, Marcel Kaufmann, Anushri Dixit, Gustavo Correa, Carlyn Lee, Jay Gao, Gene Merewether, Jairo Maldonado-Contreras, Gautam Salhotra, Maira Saboia Da Silva, Benjamin Ramtoula, Seyed Fakoorian, Alexander Hatteland, Taeyeon Kim, Tara Bartlett, Alex Stephens, Leon Kim, Chuck Bergh, Eric Heiden, Thomas Lew, Abhishek Cauligi, Tristan Heywood, Andrew Kramer, Henry Leopold, Hov Melikyan, Hyungho Choi, Shreyansh Daftry, Olivier Toupet, Inhwan Wee, Abhishek Thakur, Micah Feras, Giovanni Beltrame, George Nikolakopoulos, David Shim, Luca Carlone, Joel Burdick
Publikováno v:
Journal of Field Robotics 2: 1432-1506 (2022).
This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques uti
Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::878c270d03ccc1700deb7cf2433d800f
http://arxiv.org/abs/2203.10263
http://arxiv.org/abs/2203.10263
Autor:
Zhanpeng He, Eric Heiden, Hejia Zhang, Joseph J. Lim, Ryan Julian, Gaurav S. Sukhatme, Stefan Schaal, Karol Hausman
Publikováno v:
The International Journal of Robotics Research. 39:1259-1278
We present a strategy for simulation-to-real transfer, which builds on recent advances in robot skill decomposition. Rather than focusing on minimizing the simulation–reality gap, we propose a method for increasing the sample efficiency and robustn
Autor:
Dylan Turpin, Liquan Wang, Eric Heiden, Yun-Chun Chen, Miles Macklin, Stavros Tsogkas, Sven Dickinson, Animesh Garg
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200670
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::408c5767f6d6114ef3143b47949c4084
https://doi.org/10.1007/978-3-031-20068-7_12
https://doi.org/10.1007/978-3-031-20068-7_12
Being able to reproduce physical phenomena ranging from light interaction to contact mechanics, simulators are becoming increasingly useful in more and more application domains where real-world interaction or labeled data are difficult to obtain. Des
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85a7b280f74777ba88c37598cfd30e07
Publikováno v:
ISRR
Representing the environment is a fundamental task in enabling robots to act autonomously in unknown environments. In this work, we present confidence-rich mapping (CRM), a new algorithm for spatial grid-based mapping of the 3D environment. CRM augme
Publikováno v:
Robotics: Science and Systems
Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21d80aefb328e41a6c67ebd0cd7741b2
Publikováno v:
ICRA
Differentiable simulators provide an avenue for closing the sim-to-real gap by enabling the use of efficient, gradient-based optimization algorithms to find the simulation parameters that best fit the observed sensor readings. Nonetheless, these anal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e88f5bc08e07a9cb053201d927dfdf28
http://arxiv.org/abs/2011.04217
http://arxiv.org/abs/2011.04217
Autor:
Matteo Palieri, Kamak Ebadi, Alex Stephens, Alex Hatteland, Luca Carlone, Nobuhiro Funabiki, Yun Chang, Sally L. Wood, Eric Heiden, Abhishek Thakur, Benjamin Morrell, Ali-akbar Agha-mohammadi
Publikováno v:
arXiv
ICRA
ICRA
© 2020 IEEE. Simultaneous Localization and Mapping (SLAM) in large-scale, unknown, and complex subterranean environments is a challenging problem. Sensors must operate in off-nominal conditions; uneven and slippery terrains make wheel odometry inacc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::953428e2ebbac05191958117972b180f
http://arxiv.org/abs/2003.01744
http://arxiv.org/abs/2003.01744