Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Eric Cagnache"'
Autor:
Eric Cagnache, Jean-Christophe Wallet
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 026 (2010)
The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance
Externí odkaz:
https://doaj.org/article/b4112a4721e342c8a3f5fdfb8a1b8262
Publikováno v:
Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2011, 61, pp.1881-1897
Journal of Geometry and Physics, Elsevier, 2011, 61, pp.1881-1897
We study the noncommutative geometry of the Moyal plane from a metric point of view. Starting from a non compact spectral triple based on the Moyal deformation A of the algebra of Schwartz functions on R^2, we explicitly compute Connes' spectral dist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d1cdb5c73038b66b814d6ecc7034c16
https://hal.archives-ouvertes.fr/hal-00439423
https://hal.archives-ouvertes.fr/hal-00439423
Publikováno v:
J. Noncommut. Geom.
J. Noncommut. Geom., 2011, 5, pp.39-67
INSPIRE-HEP
J. Noncommut. Geom., 2011, 5, pp.39-67
INSPIRE-HEP
Derivations of a noncommutative algebra can be used to construct differential calculi, the so-called derivation-based differential calculi. We apply this framework to a version of the Moyal algebra ${\cal{M}}$. We show that the differential calculus,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e78b67764b1a512d3056cbbdc2ecfb6
https://hal.archives-ouvertes.fr/hal-00279913
https://hal.archives-ouvertes.fr/hal-00279913
Autor:
Jean-Christophe Wallet, Eric Cagnache
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 026 (2010)
SIGMA
SIGMA, 2010, 6, pp.026
SIGMA
SIGMA, 2010, 6, pp.026
15 pages; International audience; The spectral distance for noncommutative Moyal planes in the framework of a non compact spectral triple recently proposed as a possible noncommutaitve analog of non compact Riemannian spin manifold is considered. An