Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Eric, Delaygue"'
Autor:
Eric, Delaygue, Tanguy, Rivoal
Every polynomial $P(X)\in \mathbb Z[X]$ satisfies the congruences $P(n+m)\equiv P(n) \mod m$ for all integers $n, m\ge 0$. An integer valued sequence $(a_n)_{n\ge 0}$ is called a pseudo-polynomial when it satisfies these congruences. Hall characteriz
Externí odkaz:
http://arxiv.org/abs/2102.01534
Autor:
Eric Delaygue
Publikováno v:
Compositio Mathematica
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (2)
Compositio Mathematica, Foundation Compositio Mathematica, 2018, 154 (2)
We provide lower bounds for p-adic valuations of multisums of factorial ratios which satisfy an Ap\'ery-like recurrence relation: these include Ap\'ery, Domb, Franel numbers, the numbers of abelian squares over a finite alphabet, and constant terms o
Autor:
Eric Delaygue
Publikováno v:
2017 MATRIX Annals ISBN: 9783030041601
Mirror maps are power series which occur in Mirror Symmetry as the inverse for composition of \(q(z)=\exp (f(z)/g(z))\), called local q-coordinates, where f and g are particular solutions of the Picard–Fuchs differential equations associated with c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ef392fa39dc450963c2b2cd743918fec
https://doi.org/10.1007/978-3-030-04161-8_28
https://doi.org/10.1007/978-3-030-04161-8_28
Publikováno v:
Annales Scientifiques de l'École Normale Supérieure
Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.515-559. ⟨10.24033/asens.2392⟩
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2019, 52 (3), pp.515-559. ⟨10.24033/asens.2392⟩
Annales Scientifiques de l'École Normale Supérieure, 2019, 52 (3), pp.515-559. ⟨10.24033/asens.2392⟩
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, In press
Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2019, 52 (3), pp.515-559. ⟨10.24033/asens.2392⟩
International audience; We develop a new method for proving algebraic independence of $G$-functions. Our approach rests on the following observation: $G$-functions do not always come with a single linear differential equation, but also sometimes with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a42ff145aa51901ec5b4d4368e8042c0
https://hal.science/hal-02091793
https://hal.science/hal-02091793
Publikováno v:
Memoirs of the American Mathematical Society. 246
Using Dwork's theory, we prove a broad generalisation of his famous p-adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold fo
Autor:
Eric Delaygue
Publikováno v:
Advances in Mathematics
Advances in Mathematics, Elsevier, 2013, 234, pp.414-452
Advances in Mathematics, Elsevier, 2013, 234, pp.414-452
International audience; We give a necessary and sufficient condition for the integrality of the Taylor coefficients at the origin of formal power series $q_i({\mathbf z})=z_i\exp(G_i({\mathbf z})/F({\mathbf z}))$, with ${\mathbf z}=(z_1,...,z_d)$ and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a856a4678c986d7cb9ef684d09b4bdf8
http://arxiv.org/abs/1108.4352
http://arxiv.org/abs/1108.4352
Autor:
Eric Delaygue
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2012, 662, pp.205-252
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2012, 662, pp.205-252
International audience; We give a necessary and sufficient condition for the integrality of the Taylor coefficients of mirror maps at the origin. By mirror maps, we mean formal power series z.exp(G(z)/F(z)), where F(z) and G(z)+log(z)F(z) are particu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03e304a53d71480cb980faedc5e702db
http://arxiv.org/abs/0912.3776
http://arxiv.org/abs/0912.3776