Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Erdinç Dundar"'
Autor:
Erdinç Dundar, Nimet Akın
Publikováno v:
Journal of Mathematical Sciences and Modelling, Vol 3, Iss 1, Pp 32-37 (2020)
In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically $
Externí odkaz:
https://doaj.org/article/6b0a513ecc2546bc982da9662189dddc
Autor:
Erdinç Dundar, Muhammed Recai Türkmen
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 2, Iss 2, Pp 154-160 (2019)
In this paper, we investigate relationship between $\mathcal{I}_2$-convergence and $\mathcal{I}_2$-Cauchy double sequences in fuzzy normed spaces. After, we introduce the concepts of $\mathcal{I}_2^{*}$-Cauchy double sequences and study relationships
Externí odkaz:
https://doaj.org/article/4a502b2070aa40bf9d73e6578256046e
Autor:
Erdinç Dundar, Uğur Ulusu
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 1, Iss 2, Pp 101-105 (2018)
In this paper, we defined concepts of asymptotically $\mathcal{I}$-Cesaro equivalence and investigate the relationships between the concepts of asymptotically strongly $\mathcal{I}$-Cesaro equivalence, asymptotically strongly $\mathcal{I}$-lacunary e
Externí odkaz:
https://doaj.org/article/a64496054bc44acc8b7a9a6d8a769781
Publikováno v:
Volume: 10, Issue: 2 93-101
Mathematical Sciences and Applications E-Notes
Mathematical Sciences and Applications E-Notes
In this paper, we will introduce the notion of convergence of two dimensional interval sequences and show that the set of all two dimensional interval numbers is a metric space. Also, some ordinary vector norms will be extended to the set of two dime
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a83accc8087c7946a7d5ea6601cc78f7
https://dergipark.org.tr/tr/pub/mathenot/issue/68750/692053
https://dergipark.org.tr/tr/pub/mathenot/issue/68750/692053
On Lacunary $\mathcal{I}_2^{\ast }$-Convergence and Lacunary $\mathcal{I}_2^{\ast }$-Cauchy Sequence
Autor:
Nimet Pancaroğlu Akın, Erdinç Dündar
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 6, Iss 4, Pp 188-195 (2023)
In the study conducted here, we have given some new concepts in summability. In this sense, firstly, we have given the concept of lacunary $\mathcal{I}_2^{\ast}$-convergence and we have investigated the relations between lacunary $\mathcal{I}_2$-conv
Externí odkaz:
https://doaj.org/article/496b7bcbc0c74c748659a291d678580f
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 6, Iss 4, Pp 155-161 (2023)
In the study conducted here, we have given some new concepts in summability theory. In this sense, firstly, using the lacunary sequence we have given the concept of strongly $\mathcal{I}_{\theta_2}^{\ast}$-convergence and we have examined the relatio
Externí odkaz:
https://doaj.org/article/eee65f35264049ea94a362e0b74ca1b1
Autor:
Erdinç Dündar, Uğur Ulusu
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 6, Iss 2, Pp 86-90 (2023)
In this paper, firstly we introduced the concepts of rough $\mathcal{I}$-convergence, rough $\mathcal{I}^*$-convergence, rough $\mathcal{I}$-Cauchy sequence, and rough $\mathcal{I}^*$-Cauchy sequence of a function defined on discrete countable amenab
Externí odkaz:
https://doaj.org/article/f698ff569b14409384fe1d793338f4d8
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 5, Iss 3, Pp 150-160 (2022)
In this work, we discuss various types of $\mathcal{I}_2$-uniform convergence and equi-continuous for double sequences of functions. Also, we introduce the concepts of $\mathcal{I}_2$-uniform convergence, $\mathcal{I}_2^*$-uniform convergence, $\math
Externí odkaz:
https://doaj.org/article/60a0c7157039416e9487191824870c71
Autor:
Sevim Yegül, Erdinç Dündar
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 2, Iss 3, Pp 130-137 (2019)
In this study, we introduced the concepts of $\mathcal{I}_2$-convergence and $\mathcal{I}_2^*$-convergence of double sequences of functions in $2$-normed space. Also, were studied some properties about these concepts and investigated relationships be
Externí odkaz:
https://doaj.org/article/7c6207872b4b402989da8f7cfa49359f
Autor:
Ömer Kişi, Erdinç Dündar
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-16 (2018)
Abstract In this paper, we introduce and study the notion of rough I2 $\mathcal {I}_{2}$-lacunary statistical convergence of double sequences in normed linear spaces. We also introduce the notion of rough I2 $\mathcal{I}_{2}$-lacunary statistical lim
Externí odkaz:
https://doaj.org/article/d427d8480448487da746a7f8024beb0c