Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Erdem Dilmen"'
Autor:
Erdem Dilmen
Publikováno v:
IFAC-PapersOnLine. 53:8814-8819
This paper proposes Runge-Kutta neural disturbance observer to enhance the robustness of PID control of a system with general multicompartment lung mechanics. It is designed to observe the states of a particular type continous time, single-input sing
Autor:
Erdem Dilmen
In this paper, least-squares support vector machine (LS-SVM), whose parameters are updated by unscented Kalman filter (UKF), is adopted in the generalized predictive control (GPC) of a system with general multicompartment lung mechanics. Gaussian ker
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4377d9476a6855490159784f7dcce754
Autor:
Selami Beyhan, Erdem Dilmen
In this paper, two novel approaches are proposed to improve the performance of online least squares support vector machine for classification problem. First, the parameters of support vector classifier model including kernel width parameter are simul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ffd9bc78a8895c53bbb477a4ab7352a
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10725
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10725
Autor:
Selami Beyhan, Erdem Dilmen
Publikováno v:
CCTA
This paper proposes a novel state space least squares support vector machine (SS LS-SVM) for polynomial nonlinear state space (PNLSS) model based recursive system identification. SS LS-SVM, which also possesses an adaptive kernel function, provides a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::12dfca7d64d152cb64f91963ef8664b8
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10617
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10617
Autor:
Selami Beyhan, Erdem Dilmen
The function approximation capability of a regressor model in generalized predictive control (GPC) directly affects the tracking performance of unknown nonlinear systems. In this paper, a novel deep recurrent support vector regressor (DRSVR) is propo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a39ae85b2e8eae78b9dcf8f91663d4f
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10624
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/10624
Autor:
Erdem Dilmen, Selami Beyhan
Publikováno v:
2017 International Artificial Intelligence and Data Processing Symposium (IDAP).
This paper introduces a novel deep recurrent support vector regressor (DRSVR) model for online regression. DRSVR model is constructed by a state equation followed by an output construction. The inner layer is actually a least squares support vector r
Autor:
Taiwo Adetiloye, Sondipon Adhikari, Ibrahim Aljarah, Senjian An, Serdar Aslan, Anjali Awasthi, Ashish Bakshi, Mohammed Bennamoun, Selami Beyhan, Vimal Bhatia, Gautam Bhattacharya, Alirezah Bosaghzadeh, Farid Boussaid, Dieu Tien Bui, Kien-Trinh Thi Bui, Quang-Thanh Bui, Anusheema Chakraborty, Tanmoy Chatterjee, Rajib Chowdhury, Alan Crosky, Sarat Kumar Das, Pradipta K. Dash, Rajashree Dash, Babette Dellen, Serge Demidenko, Vahdettin Demir, Murat Diker, Erdem Dilmen, Chinh Van Doan, Fadi Dornaika, Nikoo Fakhari, Hossam Faris, Robert B. Fisher, Amir H. Gandomi, Raoof Gholami, Kuntal Ghosh, Nhat-Duc Hoang, Renae Hovey, Farzad Husain, Ioanna Ilia, Peng Jiang, Pawan K. Joshi, Taskin Kavzoglu, Gary Kendrick, Ozgur Kisi, Ye Chow Kuang, Sajad Madadi, Mojtaba Maghrebi, Ammar Mahmood, Manish Mandloi, Mohamed Arezki Mellal, Youssef El Merabet, Subhadeep Metya, Seyedali Mirjalili, Behnam Mohammadi-Ivatloo, Ranajeet Mohanty, Abdelmalik Moujahid, Aparajita Mukherjee, V. Mukherjee, Tanmoy Mukhopadhyay, J. Mukund Nilakantan, Morteza Nazari-Heris, Peter Nielsen, Stavros Ntalampiras, Melanie Po-Leen Ooi, Ashalata Panigrahi, Manas R. Patra, S.G. Ponnambalam, Dharmbir Prasad, Yassine Ruichek, Kamna Sachdeva, Mohamed G. Sahab, Houssam Salmane, Serkan Saydam, Jalal Shiri, Ferdous Sohel, Hong Kuan Sok, Shakti Suman, Vassili V. Toropov, Carme Torras, Paraskevas Tsangaratos, Edward J. Williams, Selim Yilmaz, Milad Zamani-Gargari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4ce8403040fa779de02a61a064148279
https://doi.org/10.1016/b978-0-12-811318-9.00039-9
https://doi.org/10.1016/b978-0-12-811318-9.00039-9
Artificial Bee Colony (ABC) and Levenberg-Marquardt (LM) optimization algorithms are applied efficiently for nonlinear constrained and unconstrained optimization problems in literature. In this paper, an intelligent hybridization method of the ABC an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ac8c5bb5679bcb4624de748c233b2d2
https://hdl.handle.net/11499/9245
https://hdl.handle.net/11499/9245
Autor:
Erdem Dilmen, Selami Beyhan
Publikováno v:
FUZZ-IEEE
In this paper, a recently introduced nonlinear gradient-based observer [1] has been adopted for Takagi-Sugeno (TS) fuzzy systems. The designed observer is especially aimed to estimate the unmeasurable states of the TS fuzzy systems where the LMI solu
In this paper, the well-known heuristic Artificial Bee Colony algorithm (ABC) and deterministic Levenberg-Marquardt (LM) optimization method are unified to get better performance of nonlinear optimization. In the proposed cascaded ABC-LM algorithm, t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f4c036e97ae2324a3d60e44b1074a0fb
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/8241
http://acikerisim.pau.edu.tr:8080/xmlui/handle/11499/8241