Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Eran Assaf"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Research in Number Theory. 8
We consider spaces of modular forms attached to definite orthogonal groups of low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neighbours. After reviewing algorithms to compute with these spaces, we investigate endo
Autor:
Eran Assaf
Publikováno v:
Journal of Number Theory. 224:95-141
In [BS07] Breuil and Schneider formulated a conjecture on the equivalence of the existence of invariant norms on certain $p$-adically locally algebraic representations of $GL_n(F)$ and the existence of certain de-Rham representations of $Gal(\bar{F}/
Autor:
Eran Assaf
Publikováno v:
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ee08dd249f9e4234af6c075d8c7d6959
https://doi.org/10.1007/978-3-030-80914-0_2
https://doi.org/10.1007/978-3-030-80914-0_2
Publikováno v:
INFOCOM
For many networking applications, recent data is more significant than older data, motivating the need for sliding window solutions. Various capabilities, such as DDoS detection and load balancing, require insights about multiple metrics including Bl
Publikováno v:
SYSTOR
In Distributed Denial of Service (DDoS) attacks, an attacker tries to disable a service with a flood of seemingly legitimate requests from multiple devices; this is usually accompanied by a sharp spike in the number of distinct IP addresses / flows a
Autor:
Shay Gueron, Eran Assaf
A set S of positive integers is said to have a Diophantine property, and called a Diophantine set, if xy + 1 is a perfect square for any x = y ∈ S. The task of finding integer Diophantine quadruples {a, b, c, d}, where a < b < c < d, involves sever
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db11434d29d3797897ea33233c4d3f1f