Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Epigroup"'
Autor:
Liu Jingguo
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 307-332 (2020)
A semigroup is called an epigroup if some power of each element lies in a subgroup. Under the universal of epigroups, the aim of the paper is devoted to presenting elements in the groupoid together with the multiplication of Malcev products generated
Externí odkaz:
https://doaj.org/article/e0277c52d42a45f8ad9af9d5cb0b9aa9
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Inna Mikhaylova
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 17 no. 3, Iss Combinatorics (2016)
Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of
Externí odkaz:
https://doaj.org/article/35f66c21cfcb487783e24f889bd0d696
Autor:
Jingguo Liu
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 307-332 (2020)
A semigroup is called an epigroup if some power of each element lies in a subgroup. Under the universal of epigroups, the aim of the paper is devoted to presenting elements in the groupoid together with the multiplication of Malcev products generated
Autor:
Roman S. Gigoń
Publikováno v:
Communications in Algebra. 47:188-194
We prove that any permutative k-exponential epigroup is a normal band of unipotent epigroups. Moreover, we describe the least regular congruence on such semigroups. Finally, we give an example of a...
Autor:
Grange, Zoë L, Goldstein, Tracey, Johnson, Christine K, Anthony, Simon, Gilardi, Kirsten, Daszak, Peter, Olival, Kevin J, O'Rourke, Tammie, Murray, Suzan, Olson, Sarah H, Togami, Eri, Vidal, Gema, Expert Panel, PREDICT Consortium, Mazet, Jonna AK, University of Edinburgh Epigroup members those who wish to remain anonymous
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, vol 118, iss 15
The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::75de2513069ee58fcd8ee5322b86a700
https://escholarship.org/uc/item/7rx7j23z
https://escholarship.org/uc/item/7rx7j23z
Autor:
Sergey V. Gusev, Boris M. Vernikov
Publikováno v:
Semigroup Forum
We examine varieties of epigroups as unary semigroups, that is semigroups equipped with an additional unary operation of pseudoinversion. The article contains two main results. The first of them indicates a countably infinite family of injective endo
Autor:
D. V. Skokov
Publikováno v:
Russ. Math.
Russian Mathematics
Russian Mathematics
We completely determine all commutative epigroup varieties that are cancellable elements of the lattice EPI of all epigroup varieties. In particular, we verify that a commutative epigroup variety is a cancellable element of the lattice EPI if and onl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18ebe95a642a54806938f0d22dd50b12
http://arxiv.org/abs/1803.09925
http://arxiv.org/abs/1803.09925
Autor:
Yatir Halevi
Publikováno v:
Notre Dame J. Formal Logic 59, no. 3 (2018), 417-436
Assume that $G$ is a definable group in a stable structure $M$ . Newelski showed that the semigroup $S_{G}(M)$ of complete types concentrated on $G$ is an inverse limit of the $\infty$ -definable (in $M^{\mathrm{eq}}$ ) semigroups $S_{G,\Delta}(M)$ .
Publikováno v:
Commun. Algebra
Communications in Algebra
Communications in Algebra
We completely determine all semigroup [epigroup] varieties that are cancellable elements of the lattice of all semigroup [respectively epigroup] varieties.
Comment: 17 pages, 3 figures. Compared with the previous version, we add Corollary 1.4 an
Comment: 17 pages, 3 figures. Compared with the previous version, we add Corollary 1.4 an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37a81166ccd1e812997d070f692d0a6e