Zobrazeno 1 - 10
of 454
pro vyhledávání: '"Enriquez B"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Biarnés-Suñé, A., Solà-Enríquez, B., González Posada, M.Á., Teixidor-Serra, J., García-Sánchez, Y., Manrique Muñóz, S.
Publikováno v:
In Revista Española de Anestesiología y Reanimación (English Edition) February 2021 68(2):65-72
Autor:
Biarnés-Suñé, A., Solà-Enríquez, B., González Posada, M.Á., Teixidor-Serra, J., García-Sánchez, Y., Manrique Muñóz, S.
Publikováno v:
In Revista Española de Anestesiología y Reanimación February 2021 68(2):65-72
Autor:
Enriquez, B.
We construct an explicit bundle with flat connection on the configuration space of n points of a complex curve. This enables one to recover the `formality' isomorphism between the Lie algebra of the prounipotent completion of the pure braid group of
Externí odkaz:
http://arxiv.org/abs/1112.0864
Autor:
Enriquez, B.
We construct a genus one analogue of the theory of associators and the Grothendieck-Teichmueller group. The analogue of the Galois action on the profinite braid groups is an action of the arithmetic fundamental group of a moduli space of elliptic cur
Externí odkaz:
http://arxiv.org/abs/1003.1012
The Kashiwara-Vergne (KV) conjecture states the existence of solutions of a pair of equations related with the Campbell-Baker-Hausdorff series. It was solved by Meinrenken and the first author over the real numbers, and in a formal version, by the fi
Externí odkaz:
http://arxiv.org/abs/0903.4067
Autor:
Enriquez, B., Vershinin, V. V.
We consider the Lie algebra associated with the descending central series filtration of the pure braid group of a closed surface of arbitrary genus. R. Bezrukavnikov gave a presentation of this Lie algebra over the rational numbers. We show that his
Externí odkaz:
http://arxiv.org/abs/0902.1963
Autor:
Enriquez, B., Halbout, G.
We construct quantization functors of quasi-Lie bialgebras. We establish a bijection between this set of quantization functors, modulo equivalence and twist equivalence, and the set of quantization functors of Lie bialgebras, modulo equivalence. This
Externí odkaz:
http://arxiv.org/abs/0804.0496
Publikováno v:
Algebra, etc.: in honor of Yu. I. Manin, Vol. I, 165-266, Progr. Math., 269, Birkhaeuser Boston, Inc., Boston, MA, 2009
We define a universal version of the Knizhnik-Zamolodchikov-Bernard (KZB) connection in genus 1. This is a flat connection over a principal bundle on the moduli space of elliptic curves with marked points. It restricts to a flat connection on configu
Externí odkaz:
http://arxiv.org/abs/math/0702670
Autor:
Enriquez, B.
Let Phi be the KZ associator and Psi_N be its analogue for N-th roots of 1. We prove a hexagon relation for Psi_4. Similarly to the Broadhurst (for Psi_2) and Okuda (for Psi_4) duality relations, it relies on the "supplementary" (i.e., non-dihedral)
Externí odkaz:
http://arxiv.org/abs/math/0609440